Single value risks settings

Calculation settings

Table 370 Calculation settings for module Single value risks.
Name Type Description
Selected tier

SettingsTemplateType

Specifies all module settings should be set according to a pre-defined tier or using custom settings.
Single value risk calculation method
SingleValueRiskCalculationMethod Calculate single value from exposures and hazard or from an individual risks distribution.
Exposure type
ExposureType The type of exposure considered in the assessment; acute (short term) or chronic (long-term).
Multiple substances analysis

Boolean

Specifies whether the assessment involves multiple substances.
Compute cumulative exposures

Boolean

Specifies whether the assessment involves multiple substances and results should be cumulated over all substances.
Health effect type
HealthEffectType Specifies whether the health effect is a risk (negative) or benefit (positive).
Risk characterisation ratio
RiskMetricType Report risks in terms of the ratio exposure/hazard (e.g., HI, HQ, RPI) or as hazard/exposure (e.g., MOE(T)).
Percentage for percentile

Numeric

Percentage for percentile (default 0.1 for MOE(T) or 99.9 for HI, HQ, RPI).
Use inverse distribution to calculate percentile

Boolean

Calculate percentile via the complementary percentage of the inverse distribution (default: no). Description: E.g., P0.1 of MOE(T) distribution is calculated via P99.9 of 1/MOE(T) distribution. Note: This option is provided because percentile calculation in small data sets is asymmetric in both tails.
Apply adjustment factors to the specified risk percentile

Boolean

Specify adjustment factors, e.g. based on expert knowledge elicitation, to a specified MOE(T) percentile (default 0.1%). If the selected risk metric is HI, HQ, RPI, the adjustment factors should still be specified for the complementary percentile of MOE(T) (e.g. P0.1 of MOE(T) if P99.9 of HI, HQ, RPI is selected).
Adjustment type related to exposure
AdjustmentFactorDistributionMethod Specify the factor and/or distribution of the adjustment factor for the MOE(T) percentile. Default is no adjustment. Alternatives are a fixed factor or an uncertainty distribution. If distributions are selected, default values are set based on EFSA cumulative risk reports 2020.
Parameter A (Fixed factor, mean Lognormal or LogStudent-t, or shape parameter Beta or Gamma)

Numeric

This parameter can be: 1) the fixed adjustment factor; 2) for Lognormal or LogStudent-t, the mean of the underlying normal distribution; 3) For Beta or Gamma. the shape parameter.
Parameter B (standard deviation Lognormal or LogStudent-t or second shape parameter Beta or rate parameter Gamma)

Numeric

This parameter can be: 1) for Lognormal or LogStudent-t, the standard deviation of the underlying normal distribution; 2) For Beta, the second shape parameter; 3) for Gamma, the rate parameter.
Parameter C (Lower bound Beta, offset Gamma or Lognormal or degrees of freedom Logstudent-t)

Numeric

This parameter can be: 1) for Beta, the lower bound value; 2) for Gamma or Lognormal, the offset; 3) for LogStudent-t, the degrees of freedom.
Parameter D (Upper bound Beta or offset LogStudent-t)

Numeric

This parameter can be: 1) for Beta, the upper bound value; 2) for LogStudent-t, the offset.
Adjustment type related to hazard
AdjustmentFactorDistributionMethod Specify the factor and/or distribution of the adjustment factor for the MOE(T) percentile. Default is no adjustment. Alternatives are a fixed factor or an uncertainty distribution. If distributions are selected, default values are set based on EFSA cumulative risk reports 2020.
Parameter A (Fixed factor, mean Lognormal or LogStudent-t, or shape parameter Beta or Gamma)

Numeric

This parameter can be: 1) the fixed adjustment factor; 2) for Lognormal or LogStudent-t, the mean of the underlying normal distribution; 3) For Beta or Gamma. the shape parameter.
Parameter B (standard deviation Lognormal or LogStudent-t or second shape parameter Beta or rate parameter Gamma)

Numeric

This parameter can be: 1) for Lognormal or LogStudent-t, the standard deviation of the underlying normal distribution; 2) For Beta, the second shape parameter; 3) for Gamma, the rate parameter.
Parameter C (Lower bound Beta, offset Gamma or Lognormal or degrees of freedom Logstudent-t)

Numeric

This parameter can be: 1) for Beta, the lower bound value; 2) for Gamma or Lognormal, the offset; 3) for LogStudent-t, the degrees of freedom.
Parameter D (Upper bound Beta or offset LogStudent-t)

Numeric

This parameter can be: 1) for Beta, the upper bound value; 2) for LogStudent-t, the offset.
Restrict the adjustment to the non-focal (background) exposure contributions

Boolean

When exposures are calculated by combining focal food/substance concentrations with background concentrations, it may be appropriate to have separate adjustment for the foreground and background. A pragmatic solution agreed with EFSA is to estimate the contribution (c) of the focal exposure in the tail above the selected percentile. Note that the focal exposure may add over several active substances if the focal substance refers to multiple active substances (e.g. dithiocarbamates). If this option is selected, the adjustment factors are multiplied by (1-c), representing no adjustment for the focal part.
Include focal commodity concentrations

Boolean

Specifies whether there is monitoring data that should replace part of the consumption data for the specified focal commodities.
Focal commodity concentrations replacement method
FocalCommodityReplacementMethod Replacement method to be used for replacing base concentration data with concentration data of the focal commodity/commodities concentrations.
Report consumptions and exposures per individual instead of per kg body weight

Boolean

Specifies whether body weights should be ignored and consumptions and exposures should be expressed per individual. Otherwise, the consumptions and exposures are per kg body weight.

Uncertainty settings

Table 371 Uncertainty settings for module Single value risks.
Name Type Description
Lower uncertainty limit (%)

Numeric

Percentage lower bound, e.g. 2.5%.
Upper uncertainty limit (%)

Numeric

Percentage upper bound, e.g. 97.5%.