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CHAPTER

ONE

ABOUT THE TOOLBOX

Humans are exposed to a mixture of multiple chemicals via food intake, inhalation and dermal contact. The risk to
health that may result from this depends on the effects of different chemicals in the mixture and how they combine.
MCRA 9 is the model and data toolbox developed in the EuroMix project (http://www.euromixproject.eu). It imple-
ments methods for exposure, hazard and risk assessment, following guidelines from a.o. the Joint Research Centre
(JRC) of the European Commission and the European Food Safety Authority (EFSA). The toolbox should provide
computational tools for future risk management decisions on the safety of chemicals in mixtures to be taken by the
European Commission and the Codex Alimentarius.
MCRA 9 is a collection of data and models. The system consists of modules that are arranged in eight categories
according to a modular design. See Modules overview.
Each module represents a certain type of data, which can be computed from data provided by other (sub)modules, or
the data may be obtained from a dataset selected from the data repository. Likewise, each module may be of interest
by its own merit, or may just be required as a sub-part of larger calculations. The modular design of the toolbox
reveals a network of data and models, and shows how data of types and from various sources can be combined in
overarching modules. The most overarching module is health impact estimates. The toolbox allows the user to start
in any of the modules in the modular design for performing calculations.
For each module, an action can be created to configure and run the module. For data modules, such as the concentra-
tions module, such an action comprises specifying the dataset, specifying the scope (i.e., foods of interest, substances
of insterest, etc.), and perhaps specifying specific selections or model settings for data manipulations (e.g., imputa-
tion of water concentrations in the concentrations module). For calculation modules, when calculating the data of the
module based on other data, configuration of an action comprises specification of the model settings and selection
of the calculation inputs, which is data provided by other (sub-)modules. When running an action in the toolbox,
the module produces output of its associated data type (which can be used as input for other modules), and a report
will be generated of the selected data, the selection and model settings, and the module and all intermediate (i.e.,
sub-modules) results.

1.1 Data and calculation model

1.1.1 Modular design

The modular design distinguishes between three types of modules: primary entity modules, data modules, and cal-
culation modules. For an overview see under Modules

• The primary entity modules are data modules determining the scope of the assessments in the toolbox. That is,
in each assessment, the scope specifies the foods, substances, effects, populations, responses, and/or test systems
that are of interest.

• The data modules give summaries of the available data which depend on (some of) the primary entities. For
example consumptions data.

• The calculation modules perform calculations on input data to produce data on another type, as specified by the
module name. E.g. the dietary-exposures calculation module calculates dietary exposures from consumption
and occurrence data. Some calculation modules can also act as a data module, in which case the data are
directly specified rather than calculated. An example of this is the relative potency factors module.

3
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1.1.2 Nominal run and uncertainty analysis

The toolbox distinguishes between two types of simulation runs; the nominal run and the uncertainty analysis loop.
The nominal run represents a single simulation run in which the aim is to compute the most likely, unbiased esti-
mates for the model at hands. E.g., when computing dietary exposure distributions, the nominal run computea single
exposure distribution, using nominal values for all uncertain values. In the uncertainty analysis, on the other hand,
the simulation run is repeated a number of times, each time with a different uncertainty scenario obtained using
bootstrapping, parametric resampling, and/or re-calculation of uncertain values, yielding uncertainty distributions
and confidence intervals for the nominal estimates.
Making the distinction between the nominal run and the uncertainty loops has the practical advantage that it allows
the user to setup and evaluate complex simulations first using only the nominal runs to quickly obtain a picture of
the results and identify possible errors in the data or in the model settings before running the more time-consuming
uncertainty analysis loop.

1.1.3 Retain & Refine and tiered approaches

A basic idea of Retain & Refine is that entities (e.g., substances) can be handled in different ways (more or less
refined) while still being considered together in the same risk assessment (retain). We refer to such different ways as
tiers.
In the modular design, a tier is defined here as a specific set of settings for a module or a group of modules. Tiers can
differ in many respects, and there is no single dimension to rank tiers as low vs. high. In risk assessment, typical tiers
contrast deterministic to probabilistic approaches, conservative to realistic approaches, approaches using restricted
data to approaches using more extensive data, and approaches using different degrees of model complexity. For each
of the modules of the toolbox, as many tiers are implemented as considered useful for the practice of risk assessment.
Each calculation in the modular design may involve multiple, nested, calculations of sub-modules. A risk (or health
impact) assessment builds on an exposure assessment and a hazard assessment, the exposure assessment builds on a
dietary and a non-dietary exposure assessment, the dietary exposure assessment builds on a consumption assessment
and an occurrence assessment, etc. Tiers can be defined at each node of the assessment network. An example
consists of the tiers ‘IESTI’, ‘EFSA basic optimistic’ and ‘EFSA basic pessimistic’ which are defined at the level of
a dietary exposure assessment, but include the settings for the corresponding tiers at the level of the concentration
model calculator.
Each calculator has as a main output entities that can be specified to have different tiers (tiered entities). For example,
in a hazard assessment, some substances may be assessed using a tier ‘Hazard Dose from dose-response data’, other
compounds may be assessed using a tier ‘TTCx100’ or ‘sample from general NOAEL distribution x100’ (which only
requires knowledge of the Cramer class of the compound). As another example, in dietary exposure assessment
some food-compound combinations may be recognised as risk drivers for which a more complex approach (e.g.
probabilistic modelling) is required, whereas a simpler approach (e.g. deterministic modelling) may be sufficient
for all other food-compound combinations. So in this case the tiered entity is ‘food-compound’. A typical risk
assessment will start at a tier that is simple to perform for all tiered entities (potential risk drivers). Note that, based
on data availability and ease of application, the initial assessment can already include more complex elements, such
as probabilistic modelling. If the initial calculations produce risk estimates that do not exclude concern, refinement
of the modelling for the perceived risk drivers is useful for checking whether this concern is real.

1.1.4 Uncertainty

Uncertainties may arise in different forms in many of the models and data of the toolbox. One may encounter uncer-
tainty in the data values (e.g., uncertain NOAELs, uncertain RPFs, or uncertain processing factors), uncertainty due
to limited data (e.g., a limited number of food samples), uncertainty due to a lack of data (e.g., missing concentration
data for some foods/substances or missing processing factors), and uncertainty of the models, (e.g., due to a lack of
detail). In many situations it is desirable to analyse how the model outcomes vary for the different scenarios that
uncertainties give rise to. For this, the toolbox offers:

1) for many types of data, the possibility to provide data including quantifications of uncertainty for many types
of data,
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MCRA Documentation, Release 9.0

2) imputation methods for filling in missing data in various types of models, and
3) a generic uncertainty analysis method that providing uncertainty estimates of the modelling results for many

of the modules, which are based on bootstrapping, parametric resampling, and/or re-calculation on all sub-
modules for which this is possible.

Uncertainty due to limited sampled data

For some type of data, e.g., processing factors, it may be that in some cases it is possible to not only provide nominal
estimates of the data values, but also to provide quantified estimates of the uncertainties of these values. In other
cases, it may happen that quantifications of the uncertainties of these estimates are not available. In the toolbox,
the aim is to provide the possibility to work with both quantified and unquantified uncertainties. That is, include
quantified uncertainties in a quantitive uncertainty analysis when available, or to ignore their absence and only use the
nominal estimates, perhaps in combination with an offline qualitative uncertainty analysis.
Uncertainties of the data values may be expressed in different forms, and it depends on the type of data which forms
are available, suitable, and implemented in the toolbox. For some data values, uncertainty may be quantified by
means of parametric distribution parameters (e.g., processing factor uncertainties, or kinetic model instance param-
eter uncertainties). Alternatively, uncertainty values may be provided in the form of an empirical set of uncertainty
values (e.g., relative potency factor uncertainties, or points of departure uncertainties).
Whenever data include quantified uncertainties, and the data module to which they belong is included as a sub-module
of a calculation module. These uncertainties may be chosen to be included in an uncertainty analysis of the main
module, and if this is so, the data values are resampled in each uncertainty analysis cycle based on the uncertainty
quantifications.
The basic acute exposure distribution is estimated in a Monte Carlo simulation by combining dietary consumption
records (person-days) with sampled residue values. The resulting distribution represents a combination of variabil-
ity in consumption within the population and between residues in a food lot. Percentiles may be used for further
quantification e.g. the median or 99th percentile. Due to the limited size of the underlying data, these outcomes
are uncertain. Confidence (or uncertainty) intervals reflect the uncertainty of these estimates, where MCRA uses
bootstrap methodology and/or, depending on the available data, parametric methods to estimate the uncertainty.

Empirical method, resampling

The empirical bootstrap is an approach to estimate the accuracy of an outcome. In its most simple, non-parametric
form, the bootstrap algorithm resamples a dataset of n observations to obtain a bootstrap sample or resampled set of
again n observations (sampling with replacement, that is: each observation has a probability of 1/𝑛 to be selected
at any position in the new resampled set). By repeating this process 𝐵 times, one can obtain 𝐵 resampled sets,
which may be considered as alternative data sets that might have been obtained during sampling from the population
of interest. Any statistic that can be calculated from the original dataset (e.g. the median, the standard deviation,
the 99th percentile, etc.) can also be calculated from each of the 𝐵 resampled sets. This generates a uncertainty
distribution for the statistic under consideration. The uncertainty distribution characterises the uncertainty of the
inference due to the sampling uncertainty of the original dataset: it shows which statistics could have been obtained
if random sampling from the population would have generated another sample than the one actually observed [18],
[19].

Parametric methods

Instead of bootstrapping the observed data, inference about parameters is based on parametric methods. For pro-
cessing, where factors are specified through a nominal and/or upper value this is the natural choice. For concentration
data, where the lognormal model is used to represent less conservative scenario’s (EFSA, 2012) [3], the parametric
bootstrap may be an alternative, especially when data are limited and the empirical bootstrap fails.
According to Cochran’s theorem, sample variance 𝜎̂2

𝑦 follows a scaled chi-square distribution. In the parametric
bootstrap for the lognormal distribution, the sample variance 𝜎̂2

𝑦 is replaced by a random draw from a chi-square
distribution with 𝑛1 − 1 degrees of freedom; the sample mean ̂𝜇𝑦 is replaced by a random draw from a normal
distribution with parameters ̂𝜇𝑦 and 𝜎̂∗2

𝑦 /𝑛1, giving a new set of parameters ̂𝜇𝑦 and 𝜎̂∗2
𝑦 . This is repeated 𝐵 times.
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For the truncated lognormal and censored lognormal, large sample maximum likelihood theory is used to derive new
parameters ̂𝜇𝑦 and 𝜎̂∗2

𝑦 . This is repeated 𝐵 times.
The binomial fraction of non-detects for the mixture lognormal and mixture truncated distribution is sampled using
the beta distribution with uniform priors 𝑎 = 𝑏 = 1 (with the beta distribution as the empirical Bayes estimator for
the binomial distribution). This is repeated 𝐵 times.

Uncertainty due to missing data

In some cases, it may be that data as only available for specific (primary)entities and missing for others. E.g., points
of departure (such as NOAELs or BMDs) may only be available for some of the substances of interest.

Uncertainty due to modelling approach

There is also uncertainty of model outcomes that may arise by conducting different modelling approaches or applying
alternative modelling assumptions.

Note: TODO

1.2 Data repository

Figure 1.1 shows a screenshow of the toolbox data repository browser. The data repository provides users with the
functionality upload and organise their own datasets and share these with other users. The data sources available
in the data repository can be used directly as data sources for modelling actions. Each user has a private repository

for which the user is free to upload data files and organise these files into folders and sub-folders at own liking.
Besides this, the user may be granted access to one or more shared repositories, which are repositories that are shared,
maintained, and used by multiple users. The datasets of these shared repositories may be used by the users in their
own calculations.
The central panel of the repository browser shows the data sources and sub-folders of the currently opened
folder/repository. The top bar of the repository browser shows the path of the currently opened repository, but-
tons to collapse/expand the repository folder tree-view sidebar on the left and the info-sidebar on the right , and
a button to open the action menu . The tree-view sidebar shows the hierarchical structure of the repositories and
sub-repositories to which the user has access. The info-panel shows the details of the currently selected data source
or folder. If the currently selected item is a data source, then the info panel shows the types of data available in the
data source and the different data source versions of the data source. If the currently selected item is a folder, then
the info panel shows info about the owner of the repository, the access level of the user, and info about the other users
and user groups that have access to this repository.
When a user has read-write access (or higher), new data source files can be uploaded by pressing the add button on
the bottom right and selecting the upload new file(s) item. Likewise, a new sub-repository can be created by pressing
the same add button and selecting the create new folder item. A third option is to create an external Proast link, which
can be seen as a data source repository folder in which the data sources link to datasets (outputs) available on Proast
web.

1.2.1 Repository access levels

Shares and access rights can be granted on the level of repositories and sub-folders. Data sources inherit the access
rights of the repository/folder in which these are located. The following access rights are available:

• visible: the user can only see that the repository exists, but cannot see its contents, except for sub-folders that
may also visible to the user.

• use: the user is only allowed to use the data sources in this repository, but is not allowed to download the
original data of the data sources of the repository.
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Figure 1.1: Screenshot of the toolbox data repository browser.

• read: the user can use data sources in this repository and is allowed to download the original data files of the
data sources of the repository.

• read/write: the user can use and download data sources in this repository and is allowed to add/remove files
and folders to/from this repository.

• admin: the is considered as an administrator of this repository and has full control over it, including the rights
to add/remove files and folders to/from this repository and to add/remove user and group shares.

• owner: the user is considered to be the owner of this repository and therefore has full control over it.
When a user is administrator or owner of a repository/folder, then he or she is allowed to add/remove user and group
access using the edit shares dialog (Figure 1.2) that can be opened by pressing the edit shares button .

1.2.2 Linking remote data repositories

Besides the normal data sources and folders of the data repository, the toolbox also offers the possibility to link to
external data repositories . These are remote websites that are not part of the toolbox, but which contain data
sources that can be used for calculations. Currently, there is only one remote source that can be linked as external
repository in the toolbox, which is PROASTweb (https://proastweb.rivm.nl/). PROASTweb users have the possibility
to directly link the outputs of their PROAST analyses (i.e., dose response models) as an external repository in the
toolbox.
Figure 1.3 shows an example of how PROAST outputs of a PROASTweb user are linked in an external repository
in the toolbox. Data sources of remote repositories have to be explicitly imported in the toolbox before they can be
used in analyses. Initialy, all data sources in a remote repository have a status of not-imported . When pressing
the import button , the toolbox will attempt to import the data source and once that is finished, the data source is
ready to be used in analyses.
A new PROAST remote repository link can be created by pressing the add button on the bottom right and selecting
the Create Proast link option. This will open a dialog (Figure 1.4) asking for the local name of the external repos-
itory/folder, the PROASTweb username of the user of which the outputs should be linked, and the PROASTweb
access key of the user, which is required as authentication token to access the analyses of the specified user.

1.2. Data repository 7
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Figure 1.2: Screenshot of edit-shares dialog of the toolbox data repository browser in which user and group access
rights can be added and removed by repository owners and administrators.

Figure 1.3: Screenshot of a remote (PROASTweb) repository in the toolbox data repository browser.
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Figure 1.4: Screenshot of the dialog for creating a new PROASTweb remote repository link.

1.3 Workspaces and actions

User work is organized in workspaces. A workspace is a collection of work items that are logically grouped together.
A workspace has a name, description and, optionally, a number of tags. Workspaces may be shared with other users.
Users are the owners of their own workspace folders and possible subfolders.
Actions are configurations of the modules of the modular design. Each action is of a certain action type, which
specifies the particular module for which this action is a configuration. An action can be available in two forms: 1) a
data selection action and 2) a calculation action. A data selection action comprises the selection of already available
data of that action type and specification of (subset) selections on that data. A calculation action is an action in which
the data of that action is calculated based on relevant input and specific calculator settings. Within a workspace,
multiple actions can be created.
When running an action, a task is spawned that produces output. Output is available in the form of reports or in the
form of data that can be used as input in other actions. Actions have multiple outputs when settings are changed.
Output reports are presented as screen reports or print reports. Output reports are composed of one or multiple
sections.

1.3.1 Workspace browser

Figure 1.5 shows a screenshot of the workspace browser. In the workspace browser, users can scroll through their
workspaces and select the workspace which they want to work with. Detailed information about the currently selected
item in the browser is shown in the info panel, which can be expanded/collapsed using the info button on the right
of the toolbar. The filter text box can be used to quickly find/filter workspaces by name or tag. A workspace can
be opened by clicking on the workspace name or selecting the open workspace option of the action menu of
the workspace. Opening a workspace will navigate you to the workspace overview page.
A new workspace can be added by pressing the add button on the bottom right of the screen. A workspaces can
be deleted by opening the action menu of the workspace item in the browser and selecting the delete option.

1.3. Workspaces and actions 9
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Figure 1.5: Screenshot of the workspace browser.

1.3.2 Workspace overview page

Figure 1.6 shows a screenshot of the workspace overview page. The workspace overview page gives an overview of
the actions, data, tasks, and results of a workspace, which are shown as four tabs at the top of the page. The actions
tab shows all actions of the workspace, and from this tab, actions can be opened. The data tab shows all data sources
used in this workspace. I.e., all data sources that are used by the actions of the workspace. The results tab shows
all tasks and results of simulation jobs that have been submitted by the actions of the workspace. The properties
tab shows the general information of the workspace (i.e., name, descriptions, and tags) and allows for changing this
information.
In the actions tab, all actions of the workspace are listed. The list of actions can be filtered by action type or by filter
text using the controls on the toolbar. An action can be opened by clicking on the action name or by selecting the
open action option of the action menu of the selected action item. Opening a workspace will navigate you to the
action details pages. A new action can be added to the workspace by pressing the add button at the bottom right
of the page.

1.3.3 Action page

When opening an action, the user is directed to the main panel of the action, which is the panel associated with the
action type of the action. In the main action page and subaction pages, an action can be configured, simulation jobs
can be started, and the results can be evaluated. An example is shown in Figure 1.7. This panel shows the following
sections:

• Scope: Links to the scope-panels in which the scope entities of the action can be set (e.g., foods or substances).
• Inputs: Links are shown for panels in which the calculation inputs or selection inputs can be set (e.g., con-
centration models that are inputs for computing dietary exposures).

• Data source: If the action is a data action, then a form is shown in which the data source should be specified
(e.g., selection of the concentration data source in a concentrations action).
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Figure 1.6: Screenshot of the workspace overview page.

• Settings: A form is shown in which the calculation and/or selection settings of the action can be set/changed
(e.g., specify the exposure type, chronic/acute, of an exposure assessment).

For all modules of the toolbox, panels have the same structure. Within the panel, data sources and settings for the
current action can be specified. In addition, the scope and input sub-module links that are relevant are shown. In
this way, the user can follow the structure of the modular design to select the data and settings required for running
the action. Besides the panels associated with a (sub)action, there is also a summary panel in which the main
settings and data of the action are summarized, an output settings panel in which more general output settings can
be specified, an uncertainty settings panel in which the uncertainty analysis options can be specified, and a results
panel that shows the running tasks and the results of the action. An alternative form of navigating from action to
sub-action is provided by the navigation menu in the left sidebar that can be expanded/collapsed by clicking on the
menu button on the top left in the Action bar. In this menu, all necessary modules for the complete actions are shown
in one list, allowing for a linear way of navigation.
An action is valid and ready to run if all scopes and inputs are valid and all required data and settings are configured.
For each subaction, the check symbol indicates that it has been confidured correctly and is ready to run. In case
the subaction has a warning symbol , some user action is required. When the main action is ready to run, then
a simulation job for the action can be started by clicking the run button on the top right in the grey action bar.
Optionally, subactions can be started by clicking the run button on the top right in the green (sub)action bar.
Clicking the run button will send the simulation task of this (sub)action to the job-scheduler, and the progress of the
task is shown in the results panel . When the task is completed, the output will be available in the form of a screen
report and the report and downloads will be available to download the report as pdf, and the data in csv file format.

Scoping: entity selection

Selection of the primary entities so far as relevant for an action lies at the basis of each action of the toolbox. Also
for other entities selection may be useful. Scoping of the action is defining the members for its primary entities, and
sometimes also for other entities.
As an example, Figure 1.8 shows a screenshot of the substances module panel. At the top, the data source file can
be selected containing the dataset of primary entity definitions. In the selection card, a selection can be made of the
entities in the dataset that are relevant for the current action. Note that if no explicit selection is made, the scope is

1.3. Workspaces and actions 11



MCRA Documentation, Release 9.0

Figure 1.7: Screenshot of the main page of an action.

set to all entities by default. In the settings form, additional (selection) settings are shown, e.g., selection of the index
substance which may be relevant for the chosen action type. In this way, the scope of the action can be specified by
selection of the primary entities.
The panels for the data modules have a similar structure and selection is essentially the same. The only difference is
that data actions always have a scope. I.e., data modules always relate to one or more primary entities.

Implicit versus explicit scoping

MCRA distinguishes between implicit and explicit selection of entities (scoping). By default, the selection is defined
implicitly as ‘all entities’ found in all data linked to the action. For instance, the substance scope will be all substance
codes found, not only in the substances data source, but also in the other data sources that link to substances (e.g., the
substance codes of the concentration data or the points of departure data). Given an implicit selection, also explicit
selections can be made in the specific module panel of this data type (e.g., by selecting the substances in the substances
panel). Once made explicit, selections are no longer automatically expanded when new data sources are linked to the
action.
For example, the substances scope shown in Figure 1.8 is defined explicitly, having three substances in the scope, and
excluding 1626 substances that are present in the provided substances data source and/or other linked data sources.
By pressing the clear filter button, the explicit scope can be cleared to become implicit again, effectively yielding a
scope of all substances in all linked data sources, in this case 1626 + 3 substances.

Comparing new data to set scopes

When linking a data source to an action, MCRA checks whether the data links well to the current scope (selected
entities) of the action and reports the results. For instance, when linking substance concentration data to an action
which has already an implicit or explicit substance scope, it should be checked if and how the substance codes used
in the concentration data match with the current substances scope. But the check is also performed when linking a
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Figure 1.8: Screenshot of the substances module panel as an example of a primary entity module panel.

primary entity substances data source to an action wich has already a set substances scope due to already selected
other data sources.
When linking a data table from a new data source to an action which has already a defined scope for one of the entities
in the table, there are three possible states for entity codes:

• codes included in both the scope and the data source
• codes included in the scope, but not present in the data source
• codes included in the data source, but not present in the scope

The first case represents a successful link, which requires no further action. For the second and third type of mis-
match,it depends on the type of data link whether this is considered a serious problem (red flag ) or merely a point
of attention (green flag ). For instance, in the case of concentration data, these may be assumed to be zero for
certain substances, and therefore MCRA allows missing concentration data for part of the substances in the scope:
therefore a green warning symbol will be shown. The data sources may also contain codes that are not in the scope
(e.g., substance concentrations for other substances as well), and it may be desirable to extend the scope with these
substances. Also this situation is flagged with a green warning symbol.
Figure 1.9 shows an example of a point of departure action. The substances scope has already been defined by other
data in the action (in this case points of departure data), and subsequently a substances data source is selected. Here,
there are 140 substances in the current scope (explicitly defined). However, 132 of these 140 substances are not
present in the substances data source (not in table). Hence, we are missing the definitions of these substances. This
is considered a critical linking issue that should be solved by updating the substances data source to include these
substances, therefore a red warning symbol is shown. On the other hand, the substances data source also contains 3
substances that are not part of the current scope (only in table), this situation on iots own would only lead to a green
warning symbol, but is overruled in this case by the red warning symbol.
Another example is shown in Figure 1.10 where a points of departure data source is selected, dependent on the
primary entities effects and substances. In the case of effects, we observe no linking errors, hence the data source
matches perfectly with the effects scope. For substances, we see that there are 7 substances that are in the selected
data source but not in the substances scope (new) and for 3 substances in the scope we don’t have a point of departure
(not in table). The former is fine, but we may want to extend the scope with these 7 substances (add to scope) and the
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Figure 1.9: Screenshot of checking substances data in a substances data source against an already set substances
scope.

latter should not have to be a problem, but it is a point of attention. Also, one may want to choose to remove these 3
substances from the scope (remove from scope).
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Figure 1.10: Screenshot of checking substances data in a POD data source against an already set substances scope.
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CHAPTER

TWO

MODULES

MCRA is a modular system. The diagram of Figure 2.1 shows the modules and their relations. Each module is
associated with its own type of data, and is linked to one or more other modules. Note that not all details can be fully
shown in the scheme, for details consult the table below, which specifies all relations between the modules in MCRA.

Figure 2.1: Diagram of the modular design of MCRA.

2.1 Primary entity modules

The MCRA modular system is based on six primary entities, defining who (Populations) is to be protected against
what impact (Effects) caused by what agent (Substances) originating from where (Foods), with an indication how the
effects are quantified (Responses in Test systems).

17



MCRA Documentation, Release 9.0

2.1.1 Effects

Effects are biological or toxicological consequences for human health, that may result from chemical exposure and
are the focus of hazard or risk assessment.
Output of this module is used by: Concentration models Dietary exposures with screening Dietary exposures Expo-
sure mixtures QSAR membership models Molecular docking models Active substances Relative potency factors Hazard
characterisations Points of departure Effect representations Inter-species conversions Intra species factors AOP net-
works Risks

Effects data formats

Effects

Effects are primary entities of the data model. Health effects are defined as (critical) changes relative to a treatment
or exposure.

Effects

Effects are uniquely identified by a code (idEffect). Optionally, a name and description can be added. Health effects
are commonly distinguished in two types, acute and chronic. Further properties may be specified, e.g. in relation to
decision schemes such as the use of thresholds of toxicological concern (TTCs).
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Table 2.1: Table definition for Effects.
Name Type Description Aliases Required
idEffect AlphaNumeric(50) Unique identification code of

the effect.
idEffect,
EffectId,
CodeEffect, Id,
Code, KeyEvent,
idKeyEvent

Yes

CodeSystem AlphaNumeric(100) Identifier of the coding
system of the effect code.

CodeSystem No

Name AlphaNumeric(100) Name of the effect. Name No
Description AlphaNumeric(200) Additional description or label

of the effect.
Description No

Biological-
Organisation

AlphaNumeric(100) Biological organisation of the
effect: Molecular, Cellular,
Tissue, Organ, Individual.
This is in line with AOP wiki
terminology and can be used
for grouping.

Biological-
Organisation

No

KeyEvent-
Process

AlphaNumeric(100) Description of AOP Key
event component process.
E.g., receptor signalling.

Process No

KeyEvent-
Object

AlphaNumeric(100) Description of AOP Key
event component object. E.g.,
PPAR-alpha.

Object No

KeyEvent-
Action

AlphaNumeric(100) Description of AOP Key
event component action. E.g.,
decreased.

Action No

KeyEventOrgan AlphaNumeric(100) Description of AOP Key
event organ. E.g., liver.

Organ No

KeyEventCell AlphaNumeric(100) Description of AOP Key
event organ. E.g., hepatocyte.

Cell No

AOPwikiKE AlphaNumeric(200) Key event ID number in AOP
wiki
https://aopwiki.org/events
Several ID possible Some
effects might not be in the
wiki, and this field will be
empty.

AOPWikiIds,
AOPwikiKE

No

Reference AlphaNumeric(200) External reference(s) to
sources containing more
information about the AOP
key event. E.g., the AOP
wiki, and the associated AOP
wiki Ids.

References No

Table aliases: Effects, Effect, KeyEvents, KeyEvent.

Effects settings

Selection settings

Table 2.2: Selection settings for module Effects.
Name Description
Consider critical effect Specifies whether the analysis should look at the critical effect.
Focal effect The main (health) effect of interest.
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Effects as data

Effect definitions are provided as lists/catalogues of effect definitions.
• Effects data formats

2.1.2 Foods

Foods are uniquely defined sources of dietary exposure to chemical substances. Foods may refer to 1) foods-as-eaten:
foods as coded in food consumption data (e.g. pizza); 2) foods-as-measured: foods as coded in concentration data
(e.g. wheat); 3) any other type of food (e.g. ingredients, e.g. flour).
Output of this module is used by: Consumptions Market shares Food recipes Concentrations Processing factors Unit
variability factors Occurrence patterns Substance authorisations Concentration limits Concentration models Foods as
measured Focal food concentrations Total diet study sample compositions Food extrapolations Food conversions Con-
sumptions by food as measured Dietary exposures with screening Dietary exposures Exposures Exposure mixtures

Foods data formats

Foods

Foods are of interest in (dietary) consumption assessments and the sources of exposure within expore assessments.
The foods table is the main table of the food definitions. Relevant food related data, such as processing types,
additional properties (e.g., unit weight, large portion consumption amounts, and brand loyalty), facets, and hierarchies,
can be described in the food properties, food hierarchies, and faces and facet descriptors tables.

Foods

Each food is identified by a unique code (idFood) in a code system of choice, a name, and a description. In the
EuroMix data collection, FoodEx1 codes are used for both foods in consumption surveys (foods-as-eaten) and for
raw agricultural commodities (foods-as-measured). Example: ‘A.19.01.002.002’ is pizza and pizza-like pies, cheese,
and vegetables and ‘A.01.02.001’ is wheat grain. Food codes can have a hierarchical structure (as in the FoodEx1 and
FoodEx2 coding systems), using ‘.’ or ‘$’ as separator between adjacent hierarchical levels, e.g. ‘A.05’ is fruits and
fruit products, ‘A.05.01’ is citrus fruits, and ‘A.05.01.001’ is grapefruit (citrus paradisi). Additional forms of foods,
such as foods in processed form, can be specified via food facets according to the FoodEx2 system of EFSA.

Table 2.3: Table definition for Foods.
Name Type Description Aliases Required
idFood AlphaNumeric(50) The unique identification code

of the food.
idFood, Code,
FoodId,
FoodCode,
Food, Id

Yes

Name AlphaNumeric(100) The name of the food. Name,
FoodName,
Name1,
FoodName1

No

Description AlphaNumeric(200) Food description. Description No

Table aliases: Foods, Food.

Food properties

Additional food properties, such as unit weight and portion sizes can be attached using the food properties table.
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Table 2.4: Table definition for FoodProperties.
Name Type Description Aliases Required
idFood AlphaNumeric(50) The code of the food to which

the property is attached. The
provided food code should
match with a code of the
foods table.

idFood, FoodId,
Food,
FoodCode,
Code

Yes

UnitWeight Numeric The nominal weight of a unit
(dependent of the unit of
consumption in g (default) or
kg). Unit weights are relevant
for foods-as-measured in the
context of unit variability
modelling.

UnitWeight No

BrandLoyalty Numeric A parameter used in brand
loyalty modelling, where 0
(default) specifies no brand
loyalty (on each eating
occasion a random selection
of the next lower level in the
hierarchy of food codes), and
1 specifies absolute brand
loyalty (on subsequent eating
occasions the same selection
of the next lower level in the
hierarchy of food codes).

BrandLoyalty No

LargePortion Numeric Population (1 - 97 years):
weight of a large portion
(dependent of the unit of
consumption in g (default) or
kg). Used in deterministic
modelling of exposure as in
the IESTI equation.

LargePortion,
LargePortion-
Population,
LargePortion-
General-
Population

No

LargePortion-
Babies

Numeric Babies (8 - 20 months):
weight of a large portion
(dependent of the unit of
consumption in g (default) or
kg). Used in deterministic
modelling of exposure as in
the IESTI equation.

LargePortion-
Babies

No

LargePortion-
Children

Numeric Children (2 - 6 years) weight
of a large portion (dependent
of the unit of consumption in
g (default) or kg). Used in
deterministic modelling of
exposure as in the IESTI
equation.

LargePortion-
Children

No

Table aliases: FoodProperties, FoodProperty.

Food hierarchies

Food items are commonly categorised in hierarchies, e.g. oranges and mandarins are citrus fruits. For example
FoodEx is a food description and food classification (FDFC) system consisting of a large number of individual food
items aggregated into food groups and broader food categories in a hierarchical structure of parent-child relationships.
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Table 2.5: Table definition for FoodHierarchies.
Name Type Description Aliases Required
idFood AlphaNumeric(50) Food node. idFood, FoodId,

Food, Code
Yes

idParent AlphaNumeric(50) Parent node of the food. idParent,
ParentId, Parent,
ParentCode

Yes

Table aliases: FoodHierarchies, FoodHierarchy, FoodsHierarchy.

Facets

Fode codes can be linked to facets, as e.g. in FoodEx.

Table 2.6: Table definition for Facets.
Name Type Description Aliases Required
idFacet AlphaNumeric(5) The food code of the food to

which the facet is attached.
idFacet, Code,
Id, FacetCode,
FacetId

Yes

Name AlphaNumeric(200) Facet name Name,
FacetName

Yes

Table aliases: Facets, Facet, FoodFacets, FoodFacet.

Facet descriptors

Table 2.7: Table definition for FacetDescriptors.
Name Type Description Aliases Required
idFacet-
Descriptor

AlphaNumeric(5) The identification code of the
facet descriptor.

idFacet-
Descriptor,
Code, Id,
FacetCode,
FacetId

Yes

Name AlphaNumeric(200) The name of the facet
descriptor.

Name, Facet-
DescriptorName

Yes

Table aliases: FacetDescriptors, FacetDescriptor, FoodFacetDescriptors, FoodFacetDescriptor.
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Processing types

Table 2.8: Table definition for ProcessingTypes.
Name Type Description Aliases Required
idProcessing-
Type

AlphaNumeric(50) The unique identification code
of the processing type.

idProcessing-
Type,
ProcessingType-
Id, ProcType,
Id

Yes

Name AlphaNumeric(100) The processing name. ProcName,
Name

No

Description AlphaNumeric(200) The processing type
description.

Description No

Distribution-
Type

AlphaNumeric The distribution type.
Simulated processing factors
are restricted to the interval
(0,1) using a logistic-normal
distribution (= 1) or simulated
processing factors are
restricted to positive values
using a log-normal
distribution (= 2).

Distribution-
Type,
DistType

Yes

Bulking-
Blending

AlphaNumeric(10) For types of processing
applied on large batches e.g.
juicing, sauce/puree. No
bulking/blending = 0, bulking
blending = 1.

Bulking-
Blending,
BulkBlending

Yes

Table aliases: ProcessingTypes, ProcessingType.

Foods as data

Food definitions are provided as lists/catalogues of food definitions, optionally with encompassing processing type
definitions, facet definitions, hiearchy definitions, and additional food property information.

• Foods data formats

Food coding systems

MCRA is intended to retain complete transparence of the results of risk assessment in terms of the foods that were
actually consumed (foods-as-eaten). In many cases measurements of substances have not been made on the food-
as-eaten, e.g. pizza, but on a raw agricultural commodity (RAC), e.g. tomato, onion etc. The food on which
the concentration measurements have been made is termed the food-as-measured. MCRA implements a recursive
search algorithm to link foods-as-eaten to foods-as-measured. This means that there can be intermediate steps, e.g.
if unpeeled apple and grapes are the foods-as-measured, the food-as-eaten apple pie contains peeled apple and raisins,
peeled apple is linked to unpeeled apple, and raisins are dried grapes.

Food classification: FoodEx1

Food code definition

In MCRA, a food code is a string consisting of symbols. Some special symbols (. $ - ∗) are reserved for special use
(see below), and can not be used freely in own codes.
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Codes can be hierarchical. Any code can be followed by $ or . plus a subtype code. This can be repeated any number
of times, e.g. A$B$C$D, or A.B.C.D.
Codes can specify food processing. Any code can be followed by - plus a processing code. Only one level of processing
code is allowed (e.g. FP0226-2). Subtype codes should precede processing codes (e.g. NL005$123$456-2). The
asterisk (∗) serves as a wildcard for the preceding code: the processing information is valid for all codes that start
with the code preceding the ∗.

Food codes in consumption surveys

Any coding system for foods-as-eaten can be used in MCRA. For example, in Europe EFSA develops a Food Classi-
fication and Description System for exposure assessment named FoodEx 2 ([1], [2]), featuring a hierarchical system
of a core list of foods, an extended list, and domain-specific hierarchies.

Food codes in concentration data

Any coding system for foods-as-measured can be used in MCRA.

Food processing

Concentrations of substances in foods may change when foods are processed. Examples of processing types are
peeling (e.g. of apples), cooking (e.g. of spinach), drying (e.g. of grapes), juicing (e.g. of oranges). In MCRA a
processing factor can be specified for any food. Processing factors specify the ratio of concentrations in the processed
and unprocessed food. The food code of the processed food will be converted to the food code of the unprocessed
food. In simulations the concentration in the unprocessed food will then be multiplied by the processing factor.
Special attention is needed if food processing also changes the weight of the food. Traditionally, processing factors
combine the effects of chemical alteration and weight change, so the weight change should not be double-counted.
The processing correction factor is introduced to correct processing factors that combine both effects, e.g. when 100g
raisins (dried grapes) are translated to 300g grape (food-as-measured) and the processing factor for drying combines
both effects, the processing correction factor is 3.

Recipes and food translation

Recipes specify the composition of composite foods, e.g. pizza, in terms of relevant ingredients, e.g. 100g pizza
contains 10g tomato, 5g cheese and 50g flour. Recipes are also used to specify weight changes, e.g. to obtain 100g
raisins (dried grapes) 300g of the food-as-measured grape is needed.
A special use of recipes and food translation is found in Total Diet Studies. Here, the composition of a Total Diet Study
food is specified, e.g. TDS-food FruitMix is composed of apple, orange and pear with a default translation proportion
of 100%. So in MCRA, the food-as-eaten apple is converted to FruitMix (100%) and FruitMix is considered as the
food-as-measured (TDS-food). A conversion from apple-pie (food-as-eaten) to FruitMix (food-as-measured) is based
on a recipe for apple-pie and a TDS composition for FruitMix.
Another use of converting foods (as-eaten or as an intermediate step), is through the specification of so-called food
extrapolations (read across translations), e.g. for pineapple no measurements are found but by specifying that pineap-
ple is converted to FruitMix (with a default proportion of 100%), the TDS sample concentration value of FruitMix
will be used for pineapple (as-eaten or as ingredient).

Market shares and brand loyalty

Sometimes measurements of substances in food are available at a more detailed food coding level than consumption
data. For example, measurements may have been made for specific brands of a food whereas the consumption survey
did not record the brand. MCRA allows to specify market share data for subtypes of a food (e.g. A$1, A$2, A$3 are
three brands of food A), and to calculate acute exposure based on such market shares.
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Supertypes

Sometimes measurements of substances on food are available at a less detailed food coding level than consumption
data. MCRA allows to use the concentration data of a supertype for all underlying food codes. However, this is not
the default, and an explicit permission should be given to allow this feature.

Maximum Residue Levels

Maximum residue levels are the upper legal levels of a concentration for substance residues in a food, e.g. pesticide,
or feed based on good agricultural practices and to ensure the lowest possible consumer exposure.

MCRA food code conversion algorithm

Food codes are linked using a 7-step procedure.

Food classification: FoodEx2

‘The collection and evaluation of data on levels of chemical occurrence or presence of biological agents in food and
feed are important tasks of EFSA. By combining the data with information on food consumption allows for detailed
intake and exposure estimates crucial to any food and feed safety risk assessment or nutrient adequacy analysis. The
EUMember States provide an increasing volume of data to EFSA and other European bodies. To provide a common
link to all the diverse food and feed databases, a system for the unique and universal identification and characterisation
of food and feed items is essential. EFSA has developed a preliminary standardised food classification and description
system called FoodEx2 (version 2 of the EFSA Food Classification and Description System [FCDC] for exposure
assessment). The system consists of descriptions of a large number of individual food items aggregated into food
groups and broader food categories in a hierarchical parent-child relationship. Central to the system is a common
‘core list’ of food items or generic food descriptions that represent the minimum level of detail needed for intake
or exposure assessments. More detailed terms may exist in addition to the core list and these are identified as the
‘extended list’. A parent-child relationship exists between a core list food item and its related extended list food
items. The terms of the core and extended list may be aggregated in different ways according to the needs of the
different food safety domains. In the present version four hierarchies are proposed: three domain-specific and a
general purpose one. Facets are used to add further detail to the information provided by the food list term. Facets
are collections of additional terms describing properties and aspects of foods from various perspectives’. For more
information visit: http://www.efsa.europa.eu/en/datex/datexfoodclass.htm.
For MCRA, having a different set of food codes is in itself not a problem. That is, for MCRA, it does not matter how
foods are coded, as long as they can be linked to consumptions and concentrations within an exposure assessment.
What makes FoodEx2 different from other food coding systems is that it provides additional food hierarchies, food
facets, and a combined food/facet coding system. Below follows a brief summary of these main features of the
FoodEx 2 coding system from the perspective of exposure assessment using MCRA.

Foods and food hierarchies

FoodEx 2 contains different food hierarchy definitions and allows for creation of custom food hierarchy definitions.
These hierarchies could, for exposure assessment, allow to assess intake or consumption data based on the groups
defined by these hierarchies.
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Table 2.9: Food hierarchy export from FOODEX 2.0 Browser version
0.1.3

Code Level Name ParentCode Scopenotes
A000J 1 Grains and grain-based products ROOT The category covers all …
A000K 2 Cereals and similar A000J …
A000l 3 Cereal and cereal-like grains A000K …
A000M 4 Amaranth grain A000L …
A000N 5 Buckwheat grain A000L …
A000P 6 Barley grain A000L …
… … … … …

Facets and facet descriptors

FoodEx 2 allows to provide supplementary details on specific aspects of foods by means of so-called facets and facet
descriptors. Facets are collections of terms defining specific characteristics of food from particular points of view and
facet descriptors describe specific characteristics foods. For example, processing technology is a facet, and baking is a
facet descriptor belonging to this facet. Currently, 26 facets are defined, containing in total 2172 descriptors (EFSA
2011b) [2]. Facets are also defined in a hierarchical system. For instance, cooking in fat (A07GR) and baking (A07GX)
are sub-items of the descriptor cooking and similar thermal preparation processes (A0BA1). Facets are coded as small
strings that consist of a facet code and a facet descriptor code separated by a ‘.’-character. For example, the facet
code F28.A07GX holds

1. the facet code F28, which is the facet code for process technology, and
2. A07GX , which is the descriptor code for baking.

Table 2.10: Part of the FoodEx 2 facet descriptor codes of the source facet
(F01).

Code Level Name ParentCode Scopenotes
A04SF 1 Animals ROOT …
A056H 2 Mammals (food source animal) A04SF …
A056Z 3 Farmed / non-game mammals (food source animal) A056H …
A057A 4 African buffalo (food source animal) A056Z …
A057B 4 American buffalo (food source animal) A056Z …
A057C 4 Buffalo (food source animal) A056Z …
A057D 4 Cape buffalo (food source animal) A056Z …
A057E 4 Cattle (food source animal) A056Z …
… … … … …

Implicit facets

Implicit facets are facets of a product that are already implied by the food product itself. Consider, for example,
potato boiled (A011P), where boiling (A011P) is an implicit facet, because boiling is already implied by the prod-
uct. According to EFSA [1] ‘inclusion of implicit facets in the string recorded for each food database record is not
encouraged’ and it is suggested to identify and record the implicit facet descriptors in a separate table.

Foods as facets

Foods and facet descriptors share the same unique alphanumerical coding system; in some cases, like characterising
ingredient or sweetening agent food list elements may be used as facet descriptors.

26 Chapter 2. Modules



MCRA Documentation, Release 9.0

The FoodEx 2 coding system

In the coding system, facets can be added to the primary food codes to provide supplementary detailed information
of particular data records. The structure of the FoodEx 2 codes is:

idFood#idFacet.idFacetDescriptor$idFacet.idFacetDescriptor$….

The code starts with the primary FoodEx2 food code. Then, when there are supplementary facets, the food code is fol-
lowed by a ‘#’-character and the facets string. The facets string is constructed as a concatenation of the individual facets
strings, separated by means of the ‘$’ character. As an example, consider the string A011P#F28.A07GL$F28.A07KQ
which is composed of:

• Food: A011P - Potato boiled
• Facet 1: F28.A07GL - Process technology - Boiling
• Facet 2: F28.A07KQ - Process technology - Freezing

FoodEx2

For MCRA, FoodEx 2 introduces the following points of attention:
• Reading and dealing with FoodEx 2 coded data sets
• Reading and dealing with food facets
• Reading and exploiting food hierarchy data

Reading and dealing with FoodEx 2 codes

All data entities that contain foods data are potentially affected by the introduction of FoodEx 2. In MCRA, the
following data tables are adapted to allow for input of full FoodEx 2 food codes:

• Foods
• Consumptions
• Concentrations

For these tables, the food code is allowed to be the complete FoodEx 2 food code and automatically recognized as
such. As an example, Table 2.11 shows how the FoodEx 2 coded consumptions should be provided to the system.
On important note: the maximum field length of the food code is 50. This means that there is a maximum of five
facets that can be specified for a food.

Table 2.11: Integrated coding of the facets in the consumed foods field of
food consumptions. Implementation.

Individual DayOfSurvey Food Amount FoodSurvey
14233701 1 A011R# F28.A07GX 153.43 FS01
18843004 1 A011R# F28.A07GX 125.23 FS01
34025701 1 A011R# F28.A07GX 153.60 FS01
14720005 2 A011R# F28.A07GX 105.00 FS01
49174010 1 A011R# F28.A07GX 140.00 FS01
62794010 1 A011R# F28.A07GX 67.00 FS01
61392002 1 A011P# F28.A07GL$F28.A07KQ 104.72 FS01
61281231 1 A011P# F28.A07GL$F28.A07KQ 109.72 FS01

Reading and dealing with facets data

Within MCRA, the following facets related aspects are accounted for:
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• Reading facets data
• Dealing with facets
• Facets in concentration data
• Facets in food conversion
• Using facets as processing factors
• Using hierarchy data in the output

Reading facets data

To incorporate input of facets data in MCRA, two tables Facets and FacetDescriptors are introduced as optional
tables of the Foods data group. The table for Facets and table for FacetDescriptors.
Within MCRA, the facets of FoodEx 2 coded foods, consumptions, and concentrations are automatically linked to
the provided facets and facet descriptors. Also, the facet descriptor names are added automatically to the foods
containing these facets.

Dealing with facets

The introduction of food facets allows for much more detailed specifications of consumption and concentration data.
However, it introduces the problem of deciding on which level of detail the exposure assessment should be per-
formed. That is, should concentration models be generated on the level of foods-without-facets or on the level of
foods-with-facets? E.g., should the concentrations of clementine peeled (A01CE#F28.A07LC) and clementine unpro-
cessed (A01CE#F28.A0C0S) be modelled separately or should one model be constructed for clementine (A01CE)?
Treating all clementine’s as equal may yield over-simplified conversions, whereas treating all separately may lead
to many concentration models based on only few measurements. In MCRA, no implicit grouping of concentra-
tions of equal foods with different facets is applied. If concentrations are provided for both clementine peeled
(A01CE#F28.A07LC) and clementine unprocessed (A01CE#F28.A0C0S), then these are modelled separately. An-
other question is whether the order of the facets is relevant or not. E.g., is A0BYV#F02.A06GF$F03.A06HY the
same as A0BYV#F03.A06HY$F02.A06GF? Regarding this matter, MCRA considers the facet order to be important.
I.e., A0BYV#F02.A06GF$F03.A06HY is not the same as A0BYV#F03.A06HY$F02.A06GF.

Facets in food conversion

For conversion of foods-as-eaten to foods-as-measured, MCRA considers foods with different facet strings as different
foods. I.e., there is no implicit conversion of foods-with-facets to foods-without-facets and also the order of the facets
is important. However, as it is realistic to convert food-with-facets to the base food without facets, an additional
(explicit) conversion step remove-all-facets is added that converts foods with facets to the base foods. I.e., the action
is “remove all”. There is no conversion step for “stripping off one facet at a time”. The reason for this is that there
is no good way of deciding which facet to strip off first. This new conversion step is somewhat equivalent to the
already existing default processing conversion step (step 6), and is therefore implemented as step 6b of the conversion
algorithm. Particular rules followed by this step:

• Conversion of food-with-facets to food-without-facets.

Using facets that reveal processing data

Facets containing processing information, such as part-consumed-analysed (F20) and processing technology (F28)
could be integrated with processing data. As an example, consider clementine peeled (A01CE#F28.A07LC). This
could be linked to clementine (A01CE), with processing type removal of external layer (A07LC). Linking to processing
data could be achieved by entering processing data using the facet codes. As an alternative to the current processing
factor tables, a facet-based processing factors table is defined for processing facets. That is, the codes for food
processed and unprocessed are implicitly defined for FoodEx 2.

28 Chapter 2. Modules



MCRA Documentation, Release 9.0

Table 2.12: Example of a MCRA processing factors table using FoodEx 2
foods and facets codes.

FacetCode Compound FoodCode ProcNom ProcUpp Proc-
NomUnc-
Upp

Proc-
UppUnc-
Upp

A07LC CompoundX A01CE 0.5 0.6 0.05 0.06
F28.A07GV CompoundX A0BY 0.2 0.1 0.03 0.04

Note that in the example, the facet code could be specified as the full facet code, or just the code of the facet descriptor.
As a more elaborate example consider

French fries from cut potato (A0BYV#F02.A06GF$F03.A06HY$F04.A00ZT$F28.A07GR)

For this food code, the substring of the processing facet is extracted from the list of facets.
• A0BYV#F02.A06GF$F03.A06HY$F28.A07GR$F04.A00ZT with processing facet link A07GR
• A0BYV#F02.A06GF$F03.A06HY$F04.A00ZT

In MCRA, a table FacetProcessingFactors is introduced that allows for specification of processing factors by means
of facets. This table has the following structure:

Table 2.13: Table FacetDescriptors of the Food data group.
Column name Key Required Type Size Description
idProcessingType Yes Yes String 5 The facet code of this processing

factor definition. May be specified
as full facet code, i.e., facet code
plus facet descriptor code, or as the
facet descriptor code.

idFood Yes Yes String 200 The food code
idCompound Yes No String 50 The compound for which this

processing factor is defined.
Nominal No Yes Double Nominal value (best estimate of

50th percentile) of processing factor
(defines median processing factor)

Upper No Yes Double Upper value (estimate of 95th
percentile or “worst case” estimate)
of processing factor due to
variability

NominalUncertaintyUpper No Yes Double Upper 95th percentile of nominal
value (Nominal) due to uncertainty.
A standard deviation for uncertainty
of the nominal value (Nominal) is
derived using the nominal value
(Nominal) and upper 95th
percentile
(NominalUncertaintyUpper)

UpperUncertaintyUpper No Yes Double Upper 95th percentile of upper
value (Upper) due to uncertainty.
From the nominal value (Nominal),
upper value (Upper) and the
specified uncertainties of these
values (NominalUncertaintyUpper
and UpperUncertaintyUpper,
respectively) the degrees of
freedom of a chi-square distribution
describing the uncertainty of the
standard
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The integration with the food conversion algorithm is as follows: Conversion step 2 (processing) is extended with a
step 2c (processing facet) that attempts to match facets of a food code to processing data provided in the processing
facets table. The following important rules are followed:

• Processing factors can be defined for base-food-code/facet-code combinations and translate as food-with-
processing-facet to food-without-processing-facet.

• If multiple processing facets are present in the food-as-eaten code, then the last processing facet is used first
for conversion.

• Facet processing factors can be specified using the full facet code (i.e., facet-code plus facet-descriptor-code)
or just the facet descriptor code. If both are specified for the same food, the full facet code is used.

• Facet processing factors can be defined compound-specific, and non-compound-specific. Processing factors
that are defined compound-specific always precede non-compound specific processing factors.

• Processing factors defined by a food-processed/food-unprocessed combination precede processing factors de-
fined through facets.

Weight reduction factors for processing factors defined for facets should be included in the food translation table and
should match exactly.

Food hierarchies

Reading and dealing with food hierarchy data

Within MCRA, the following hierarchy related aspects are accounted for:
• Reading food hierarchy data
• Using hierarchical data for conversion of foods
• Using hierarchy data in the output

Reading food hierarchy data

A new data group named Foods is added. In this group, a new table for FoodHierarchies is used for input of food
hierarchies. This table contains food hierarchy node-definition records that reflect a hierarchical structure. For foods
that are not in this list as idFood, it is implicitly assumed that these foods are root items.
Note: It is common practice to describe hierarchies using tree structures. Here, the elements of the tree are named
nodes, the lines connecting the nodes are named branches, and nodes without children are leaf nodes/end-nodes. This
terminology is also used throughout the remainder of this document.

Using food hierarchies for food conversion

The introduction of the hierarchy structure allows for integration with step 4 and step 5 of the food conversion
algorithm; the subtype and supertype linking steps. That is, when no concentration data is found for a certain product,
the concentration data of a (according to the hierarchy) related product could be used. In MCRA, the supertype
conversion step also contains a hierarchy-supertype step based on the food hierarchy.
Supertype link (step 5):

a) Supertype: Try to find supertypes base on ‘$’-coded strings, e.g., ‘xxx$yyy’ is converted to ‘xxx’
b) Hierarchy-supertype: try to find the supertype of the current food based on the food hierarchy (i.e., convert

the current food to its parent).
Note 1: the supertype conversion step is optional and should be specified in the conversion settings panel.
Note 2: the hierarchy-supertype step only applies for foods-without-facets. The reason for this is that for the conver-
sion, the base type of a food-with-facets can be considered as a better conversion candidate than the parent food with
the same facets.
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Using hierarchy data in the output

Food hierarchy information could be used in presentation of various tables of the output of MCRA. That is, in the
tables in which foods data is presented, these records could be grouped based on the hierarchy and/or a tree-like
display can be built for the presentation of this data. Tables that are candidate for being extended are, for example,
the input data tables foods-as-eaten/foods-as-measured and the exposure by food-as-eaten/food-as-measured output
tables.
Summarizing over the food hierarchy is many cases not a straightforward task. Consider, for instance, the statistic
number of consumption days given the artificial hierarchy of Citrus Fruits containing two child-nodes Mandarin and
KingMandarin: the number of consumption of Citrus Fruits is not “just” the sum of the consumption day ofMandarin
and King Mandarin. A difficulty for summarizing based on a hierarchy arises when a node contains both data and
child-nodes with data. E.g., concentrations are defined on the level of Citrus Fruits and on the level of Mandarin.
In this case, the hierarchy view should ideally summarize for both Citrus Fruits as data record and Citrus Fruits as
summary node. An additional complication is the status of facet-coded foods within the hierarchy. In a hierarchical
view, foods-with-facets should ideally be added to their base-foods for visualization.
In MCRA, an alternative view (treetable) is added that can display hierarchical data. This alternative view is used to
present a hierarchical view based on the foods hierarchy for the consumption input summary tables food as eaten and
food as measured. The data summary methods for these tables are updated such that the data is also summarized per
hierarchy-node.

Figure 2.2: Hierarchy view for the foods as eaten input summary table.

If a node contains both data and a child record, then this node is split-up in two nodes: a summary node that summa-
rizes the data of the node and all of its child nodes, and a data record with the string “(unspecified)” added as a child
of this summary node. See Figure 2.2 for an example (Citrus Fruits versus Citrus Fruits (unspecified)). In MCRA,
foods-with-facets are added as child nodes of the foods-without-facets.

2.1.3 Populations

Populations are groups of human individuals that are the scope of exposure or risk assessments. Optional descriptors
of populations are location (e.g. a country), time period (start date, end date), age range and gender. Example: the
French population in 2005-2007 of women of child-bearing age (18-45 yr).
Output of this module is used by: Consumptions Consumptions by food as measured Dietary exposures Non-dietary
exposures Exposures Human monitoring analysis Risks

Populations data formats

2.1. Primary entity modules 31



MCRA Documentation, Release 9.0

Populations

Populations are primary entities of the data model.

Populations

Populations are used to select dietary, nondietary and human monitoring surveys. Optionally, a name and description
can be added. Population can be restricted to a certain time period. AgeMin, AgeMax and Gender are optional
properties of a population.

Table 2.14: Table definition for Populations.
Name Type Description Aliases Required
idPopulation AlphaNumeric(50) Unique identification code of

the population.
IdPopulation,
PopulationId,
Code, Id

Yes

Name AlphaNumeric(100) The name of the population. Name,
PopulationName

No

Description AlphaNumeric(200) Description of of the
population.

Description No

Location AlphaNumeric(50) Location. No
StartDate DateTime Starting date of the specific

time window marking this
population.

StartDate No

EndDate DateTime End date of the specific time
window marking this
population.

EndDate No

AgeMin Integer Inclusive minimum bound (in
years) of the specific age
group of this population.

AgeMinimum No

AgeMax Integer Inclusive maximum bound (in
years) of the specific age
group of this population.

AgeMaximum No

Gender AlphaNumeric(50) Gender levels of this
population.

Sex No

Table aliases: Populations, Population.

Populations settings

Selection settings

Table 2.15: Selection settings for module Populations.
Name Description
Population Specifies which population is selected.

Populations as data

• Populations data formats
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2.1.4 Responses

Responses are measurable entities in test systems. Responses are used to represent effects (see effect representations)
and their measured values are collected in dose response data.
This module has as primary entities: Test systems
Output of this module is used by: Dose response models Dose response data Effect representations

Responses data formats

Responses

A response is a measurable endpoint on in a test system. E.g., in a rat test system a response may be the percentage
of fatty hepatocytes observed after 90 days. Responses are defined in the responses table.

Responses

Each response is identified by a unique code (idResponse) in a code system of choice, a name, and a description. Also,
each response should be linked to a test system (idTestSystem) on which the response is measured. Responses can
be of various types (ResponseType), e.g., ContinuousMultiplicative (= non-negative real values using a ratio scale),
ContinuousAdditive (= real values using an interval scale), Ordinal, Quantal, or Binary. For continuous variables,
the response unit (ResponseUnit) is also relevant. Additionally, also a reference to the test method guideline, e.g.,
standaridised assay kit may also be specified (GuidelineMethod).
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Table 2.16: Table definition for Responses.
Name Type Description Aliases Required
idResponse AlphaNumeric(50) Unique identification code of

the response. In the EuroMix
data collection, a EuroMix
coding system has been set up
in which the id of the test
system prefixes the id of the
response. E.g.,
‘HepaRG-PCR-PPARA’,
‘RatWEC-PCR-CYP26a1’
and ‘MouseDevelopmental-
FacialPrimordia-malformed-
E9’.

idResponse,
ResponseId,
Response, Id

Yes

CodeSystem AlphaNumeric(100) Identifier of the coding
system of the response code.

CodeSystem No

Name AlphaNumeric(100) Name of the response. Name No
Description AlphaNumeric(200) Additional description or label

of the response.
Description No

idTestSystem AlphaNumeric(50) Unique identification code of
the test system.

idTestSystem,
idSystem,
SystemId,
TestSystem

Yes

Guideline-
Method

AlphaNumeric(200) Reference to the test method
guideline, e.g., standaridised
assay kit.

Guideline-
Method

No

ResponseType ResponseTypes The data type of the response
measurements (e.g.,
continuous multiplicative,
ordinal, categorical).

ResponseType Yes

ResponseUnit AlphaNumeric(100) If the response type is
Continuous, then this should
be the unit of the response,
e.g., kg.

ResponseUnit No

Table aliases: Responses, Response.

Responses settings

Selection settings

Table 2.17: Selection settings for module Responses.
Name Description
Response(s) The response(s) of interest.

Responses as data

A response is a measurable endpoint defined in a test system. It has a unit and a measurement type (e.g., continuous
non-negative, quantal).

• Responses data formats
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2.1.5 Substances

Substances are chemical entities that can refer to: 1) active substances such as investigated in toxicology; 2) measured
substances such as defined in specific analytical methods. MCRA assessments can have one or more substances as
the scope. When more than one substance is specified, there is an option to perform a cumulative assessment. In
that case one of the substances has to be indicated as the index/reference substance, and results will be expressed in
equivalents of the index substance.
Output of this module is used by: Concentrations Processing factors Unit variability factors Occurrence patterns Sub-
stance authorisations Substance conversions Concentration limits Concentration models Foods as measured Focal food
concentrations Food conversions Consumptions by food as measured Dietary exposures with screening Dietary expo-
sures Non-dietary exposures Exposures Exposure mixtures Human monitoring data Human monitoring analysis QSAR
membership models Molecular docking models Kinetic models Active substances Relative potency factors Hazard char-
acterisations Points of departure Dose response models Dose response data Inter-species conversions Intra species fac-
tors Risks

Substances data formats

Substances

Substances are primary entities of the data model. Substance intakes are of main interest in exposure assessments and
the effect of intake on human health is of interest in risk assessments. In the substances table, the substance entities
and other relevant substance properties that are relevant for the assessment at hand should be defined.

Substances

Each substance should have a unique identification code (idSubstance), and optionally, a name and description may be
used for a more detailed description of the entity. Additional properties, such as the molecular mass (MolecularMass)
and Cramer class (CramerClass) may also be specified. Example: Captan (idSubstance RF-0061-001-PPP) has
MolecularMass 300.5922 and CramerClass 3.
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Table 2.18: Table definition for Compounds.
Name Type Description Aliases Required
idSubstance AlphaNumeric(50) The unique identification code

of the substance. This code
may be from an existing
coding system, such as
CAS-codes or Param codes of
EFSA, or it may be a
used-defined code.

idSubstance,
SubstanceId,
Substance,
Code, Id

Yes

Name AlphaNumeric(100) The substance name. Name,
SubstanceName,
PesticideName

No

Description AlphaNumeric(200) Substance description. Description No
ARFD Numeric The acute reference dose of

the critical effect. Note that
this is always specified in
mg/kg bw/day (exposure).

ARFD No

ADI Numeric The acceptable daily intake.
Note that this is always
specified in mg/kg bw/person
(exposure).

ADI No

SF Numeric The safety factor belonging to
the ADI/ARFD.

SF No

CramerClass Integer The Cramer class of the
substance.

CramerClass No

MolecularMass Numeric The molecular (molar) mass. MolecularMass,
Mass,
MolarMass,
Molecular-
Weight,
MolarWeight

No

Table aliases: Substances, Substance.

Substances settings

Selection settings

Table 2.19: Selection settings for module Substances.
Name Description
Index substance The substance of interest or index substance.

Substances as data

• Substances data formats

2.1.6 Test systems

Test systems are biological or artificial systems used for assessing hazard in relation to chemical exposure from
substances in varying doses. Test systems may refer to 1) in-vivo test systems (e.g. a rat 90-day study, a human
biomonitoring study); 2) in-vitro test systems (e.g. HepaRG cells).
Output of this module is used by: Responses Dose response models Dose response data
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Test systems data formats

Test Systems

Test systems are the biological systems (e.g., animals) or in-vitro systems on which responses related to health effects
can be measured.

Test Systems

Each test system should have a unique identification code (idSystem), and (optionally) a name and a description. The
test system’s type (TestSystemType) indicates the type whether the test system is an in-vivo test system (in which
case it is a model for external exposure) or any of a range of other, in-vitro, options (cell-line, etc., which all will be
interpreted as models for internal exposure). Additionally, if applicable, the organ (e.g., liver) of the test system and
the route of exposure (RouteExposure) for in-vivo test systems (oral, dermal or inhalation) may be specified.

Table 2.20: Table definition for TestSystems.
Name Type Description Aliases Required
idTestSystem AlphaNumeric(50) Unique identification code of

the test system.
idTestSystem,
idSystem, Id,
Code

Yes

CodeSystem AlphaNumeric(50) Identifier of the code system
of the test systems.

CodeSystem No

Name AlphaNumeric(100) Name of the test system. Name No
Description AlphaNumeric(200) Additional description or label

of the test system.
Description No

TestSystem-
Type

TestSystemTypes The type of the test system,
i.e., in-vivo, cell-line, etc.

TestSystem-
Type,
SystemType

No

Organ AlphaNumeric(100) If applicable, the organ that
the cells originate from
associated with the in vitro
test-system.

Organ No

Species AlphaNumeric(100) If applicable, the species
associated with the
test-system.

Species No

Strain AlphaNumeric(100) If applicable, the strain of the
species associated with the
test-system.

Strain No

RouteExposure ExposureRouteTypes If applicable, the route of
exposure associated with the
in vivo test-system, oral,
dermal, inhalation, s.c., i.v.

ExposureRoute-
Type,
ExposureRoute,
RouteExposure

No

Guideline-
Method

AlphaNumeric(200) Reference to test guideline. GuidelineStudy No

Reference AlphaNumeric(200) External reference(s) to other
sources containing more
information about the test
system. E.g., publications,
website, documents.

Reference No

Table aliases: TestSystems, TestSystem, Systems, System.

Test systems as data

• Test systems data formats
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2.2 Consumption modules

Consumption modules specify the consumptions of foods by surveyed individuals in populations. Foods can be related
to each other using food recipes.

2.2.1 Consumptions

Consumptions data are the amounts of foods consumed on specific days by individuals in a food consumption survey.
For acute exposure assessments, the interest is in a population of person-days, so one day per individual may be
sufficient. For chronic exposure assessments, the interest is in a population of person, so preferably two or more days
per individual are needed.
This module has as primary entities: Populations Foods
Output of this module is used by: Food conversions Consumptions by food as measured

Consumptions data formats

Consumption data is often collected in 24-hour dietary recall studies and contains the food consumptions and con-
sumption amounts for a number of individuals on a number of days. For each of the individuals, the bodyweight
should be specified, and optionally also age, sex, and other properties may be recorded. If applicable, sampling
weights may also be specified that can be used to correct the sample of individuals in the survey to a more repre-
sentative sample of the targetted population. The consumption amounts are usually expressed in grams, but may
also be expressed in alternative units of plates, cups, or spoons. Optionally, the uncertainty of food consumption
quantifications can be specified, see [42].

Consumptions

Consumption surveys are described using three tables: FoodSurveys, Individuals, and Consumptions. Individuals are
linked to food surveys using the survey code (idFoodSurvey), and consumptions are linked to individuals using the
individual codes (idIndividual). The food codes used to identify the consumed foods should match with the codes
provided by the foods entity definitions.

Food consumption surveys

The records of the food consumption surveys table contain the ids, names, descriptions, and other relevant metadata
of consumption surveys.
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Table 2.21: Table definition for FoodSurveys.
Name Type Description Aliases Required
idSurvey AlphaNumeric(50) Unique identification code of

the food consumption survey.
idSurvey,
idFoodSurvey,
Survey,
FoodSurvey,
SurveyId,
FoodSurveyId,
Name, Code, Id

Yes

Description AlphaNumeric(200) Description of the food
consumption survey.

Description No

Location AlphaNumeric(50) The location or country where
survey is held. It is
recommended to use ISO
Alpha-2 country codes.

Location,
Country

No

BodyWeight-
Unit

BodyWeightUnits The unit of bodyweight of the
individuals of the survey: kg
(default) or g.

BodyWeight-
Unit,
UnitBody-
Weight,
WeightIn

No

AgeUnit AgeUnit The unit of age, i.e., year or
month.

UnitAge, agein,
AgeUnit

No

Consumption-
Unit

ConsumptionUnits The unit of the
use/consumption amounts of
the consumptions of the
survey: g (default) or kg or
CustomUnit (see table food
consumption quantifications
table).

AmountUnit,
UnitAmount,
AmountUnit,
Consumption-
Unit

No

StartDate DateTime The start date of the survey. StartDate No
EndDate DateTime The end date of the survey. EndDate No
NumberOf-
SurveyDays

Integer The number of days each
individual participated in the
survey.

NumberOf-
SurveyDays,
NDaysInSurvey

Yes

idPopulation AlphaNumeric(50) Unique identification code of
the population.

IdPopulation,
PopulationId

No

Table aliases: FoodSurvey, FoodSurveys, Survey, Surveys.

Individuals

The individuals of a survey are recorded in the individuals table.

2.2. Consumption modules 39



MCRA Documentation, Release 9.0

Table 2.22: Table definition for Individuals.
Name Type Description Aliases Required
idIndividual AlphaNumeric(50) Unique identification code of

the individual.
idIndividual,
IndividualId,
Individual, Id

Yes

idFoodSurvey AlphaNumeric(50) The identification code / short
name of survey.

idSurvey,
idFoodSurvey,
Survey,
FoodSurvey,
SurveyId,
FoodSurveyId,
SurveyCode

Yes

BodyWeight Numeric The body weight of the
individual.

BodyWeight,
Weight

Yes

Sampling-
Weight

Numeric The sampling weight for an
individual (default = 1).

SamplingWeight No

NumberOf-
SurveyDays

Integer The number of days the
individual participated in the
survey.

NumberOf-
SurveyDays,
NumberOfDays-
InSurvey,
DaysInSurvey,
NDaysInSurvey

No

Age Numeric The age of the individual. Age No
Gender AlphaNumeric(50) The gender of the individual.

It is recommended to use the
codes Male/Female for coding
the gender.

Gender No

Other individual
properties

Other individual properties
can be added just like the
fields age and gender. These
properties are automatically
parsed as co-factors or
co-variables.

No

Table aliases: Individuals, Individual.

Individual properties

Individual properties, additional columns that can also be specified as additional columns in the Individuals table

Table 2.23: Table definition for IndividualProperties.
Name Type Description Aliases Required
Name AlphaNumeric(50) The name of the property. Id Yes

Table aliases: IndividualProperties, IndividualProperty.

Individual property values

Individual property values, additional columns that can also be specified as additional columns in the Individuals table
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Table 2.24: Table definition for IndividualPropertyValues.
Name Type Description Aliases Required
idIndividual AlphaNumeric(50) The identification number of

the Individual.
Id Yes

PropertyName AlphaNumeric(50) The name of the property. Name Yes
TextValue AlphaNumeric(50) The value of the property as

text value.
No

DoubleValue Numeric The value of the property as
number.

No

Table aliases: IndividualPropertyValues, IndividualPropertyValue.

Consumptions

The individual consumptions are recorded in the consumptions table.

Table 2.25: Table definition for Consumptions.
Name Type Description Aliases Required
idIndividual AlphaNumeric(50) The unique identification code

of the consumer (individual).
idIndividual,
IndividualId,
Individual

Yes

idFood AlphaNumeric(50) The food code (food as eaten
code).

idFood, Food,
FoodId,
FoodConsumed,
FoodAsEaten

Yes

idUnit AlphaNumeric(50) Identification code of the unit
in which the food is consumed
(e.g. plate, cup, spoon).

idUnit, Unit,
UnitId

No

idDay AlphaNumeric(50) Identification code of the day
of consumption, sequential
number

idDay, DayId,
Day,
DayOfSurvey

Yes

idMeal AlphaNumeric(50) Identification code of the meal
(eating occasion within a day).

idMeal, MealId,
Meal

No

Amount Numeric The consumed portion of food
in g (default) or kg or quantity
of a plate, cup, spoon. Days
without consumptions are not
recorded.

Amount,
Amount-
Consumed

Yes

DateConsumed DateTime The date of the consumption. DateConsumed,
Consumption-
Date

No

Table aliases: FoodConsumptions, FoodConsumption, Consumptions, Consumption.

Food consumption quantificiations

Food consumption quantifications record information about food consumption quantities that are associated with
unit-consumptions of foods.
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Table 2.26: Table definition for FoodConsumptionQuantifications.
Name Type Description Aliases Required
idFood AlphaNumeric(50) The food code of the

quantification.
idFood, FoodId,
Food

Yes

idUnit AlphaNumeric(50) The code of the unit of
consumption. E.g spoon,
plate, cup. Units may depend
on food.

idUnit, UnitId,
Unit

Yes

UnitWeight Numeric The unit weight/portion size
of the food, specified in
grams.

UnitWeight Yes

UnitWeight-
Uncertainty

Numeric The uncertainty in unit
weight/portion size (%).

UnitWeight-
Uncertainty,
UnitWeight%

No

Amount-
Uncertainty

Numeric The uncertainty in amount
consumed (%). The label
‘general’ specifies a default
value for the uncertainty when
specific information for
combinations of food and unit
in food consumptions table is
not available.

Amount-
Uncertainty,
Amount%

No

Table aliases: FoodConsumptionQuantifications, FoodConsumptionQuantification.

Consumptions settings

Selection settings

Table 2.27: Selection settings for module Consumptions.
Name Description
Food survey The food consumption representative for the population of

interest.
Restrict population to
consumers or consumer days
only

Specifies whether the population should be restricted to the
individuals (chronic) or individual days (acute) that have non-zero
consumption.

Restrict population to
consumers or consumer days
with consumptions of specific
foods

Specifies whether the population should be restricted to the
individuals (chronic) or individual days (acute) consuming any of
the foods of the specified subset.

Selected foods-as-eaten Set of consumed foods that are of particular interest for restricting
the consumers / consumption days.

Consumption subset: restrict to
consumptions of specific foods

If checked, then the consumptions are restricted to those of the
specified food-as-eaten subset.

Selected foods-as-eaten Set of consumed foods that are of particular interest.
Ignore sampling weights If checked, individual sampling weights are not used (sampling

weight = 1). If unchecked, the specified sampling weights are
used.
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Uncertainty settings

Table 2.28: Uncertainty settings for module Consumptions.
Name Description
Resample individuals Individual data are resampled from the original database using the

bootstrap methodology (Efron 1979, Efron & Tibshirani 1993).
Resample portion sizes Specifies whether portion sizes should be resampled based on

food consumption quantification data, see (Souverein et al. 2011).

Consumptions uncertainty

In MCRA, in an acute exposure assessments, individual consumption day data are resampled, thus preserving the
multivariate consumption patterns and associated weights and/or other individual characteristics. In MCRA we re-
sample the set of individuals x number of survey days. We think that this implementation better reflects the notion of
acute exposure which is expressed as the normalized intake per day. For chronic exposure assessments the resampling
algorithm remained unchanged and the set of individuals (with corresponding days) is resampled.

Consumptions as data

Consumptions data are the amounts of foods consumed on specific days by individuals in a food consumption survey.
• Consumptions data formats

2.2.2 Food recipes

Food recipes data specify the composition of specific foods (typically: foods-as-eaten) in terms of other foods (in-
termediate foods or foods-as-measured) by specifying proportions in the form of a percentage.
This module has as primary entities: Foods
Output of this module is used by: Food conversions

Food recipes data formats

Food recipes

Recipe data to specify the ingredients of foods. Food recipes can be used to describe the ingredients of a composite
food (e.g., of apple pie), or to specify the amount of a primary ingredient needed to obtain 100g of the food (e.g.,
grapes to raisins). Recipe is commonly used recursively (e.g., apple pie contains apple and flour, flour contains wheat).
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Recipes

Table 2.29: Table definition for FoodTranslations.
Name Type Description Aliases Required
idFromFood AlphaNumeric(50) The code of the composite

food (from-code), i.e., the
code of the food for which the
ingredient(s) are specified.

idFromFood,
FromFoodId,
FromFood,
FoodFrom,
Food

Yes

idToFood AlphaNumeric(50) The code of the ingredient
food (to-code).

idToFood,
ToFoodId,
ToFood,
FoodTo,
Ingredient

Yes

Proportion Numeric Proportion of each ingredient
in the food (%).

Proportion,
Proportion%

Yes

idPopulation AlphaNumeric(50) Unique identification code of
the population.

IdPopulation,
PopulationId

No

Table aliases: FoodTranslations, FoodTranslation, FoodCompositions, FoodComposition.

Food recipes as data

Food recipes are provided as data in the form of simple composition tables.
• Food recipes data formats

2.2.3 Market shares

Market shares data specify for a given food, percentages of more specific foods (subfoods, e.g. brands) representing
their share in a market. Market shares are used when consumption data are available at a more generalised level than
concentration data.
This module has as primary entities: Foods
Output of this module is used by: Food conversions

Market shares data formats

MarketShares

Describes the shares (proportions) in a market.

Market shares

Market shares main table.
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Table 2.30: Table definition for MarketShares.
Name Type Description Aliases Required
idFood AlphaNumeric(50) The subtype of the food. idFood, FoodId,

Food, FoodType
Yes

Percentage Numeric Market share of each subtype
(%)

Percentage,
Marketshare-
Percentage,
MarketShare,
MarketShare-
Percentage,
MarketShare%

Yes

Table aliases: MarketShares, MarketShare, FoodMarketShares, FoodMarketShare.

Market shares as data

Market shares are provided as data in the form of percentages.
• Market shares data formats

Market shares and brand loyalty

Sometimes measurements of substances in food are available at a more detailed food coding level than consumption
data. For example, measurements may have been made for specific brands of a food whereas the consumption survey
did not record the brand. MCRA allows to specify market share data for subtypes of a food (e.g. A$1, A$2, A$3 are
three brands of food A), and to calculate acute exposure based on such market shares.
For chronic assessments brand loyalty should be specified according to a simple Dirichlet model [22]. Technically,
the Dirichlet model for brand choice needs nbrand parameters 𝛼𝑖 (which should be positive real numbers). The
average brand choice probability for each brand is

𝛼𝑖/𝑆

where

𝑆 = ∑ 𝛼𝑖

By definition, themarket shares𝑚𝑖 should be proportional to the brand choice probabilities, and thus to the parameters
𝛼𝑖. Thus means that 𝑆, the sum of the alphas, is the only additional parameter that should be specified, and indeed
this is the parameter that determines brand loyalty. 𝑆 = 0 corresponds to absolute brand loyalty, and brand loyalty
decreases with increasing 𝑆. We define 𝐿 = (1 + 𝑆)−1 as an interpretable brand loyalty parameter, where now
𝐿 = 0 and 𝐿 = 1 correspond to the situations of no brand loyalty and absolute brand loyalty, respectively. Given
empirical or parametric distributions of consumption and concentration values, the algorithm for chronic exposure
assessment now operates as follows:

1. Simulate consumptions for a large number 𝑛 of individuals.
2. Simulate 𝑛 selection probabilities from the Dirichlet distribution
3. For each individual, simulate 𝑑 brand choices from a multinomial distribution using the individual specific

selection probabilities from step 2.
4. For all individuals and days simulate values from the appropriate concentration distribution.
5. Multiply consumption with concentration to obtain exposure.
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2.3 Occurrence modules

The basic occurrence data are concentrations for substances in foods, sometimes specified separately for a focal food
as focal food concentrations. In some cases concentration limits are used as a stand-in when data are missing.
Concentration data are recalculated (if needed) as active substance concentrations in foods-as-measured. If substance
concentrations are not specified directly for the active substances, then they are converted using substance conversions
and/or specified authorised occurrence patterns. The composition of mixed samples in total diet studies is described
in total diet study sample compositions. Food extrapolation rules specify if insufficient data for a food can be suppleted
with data from another food. From these basic data the list of foods-as-measured is derived.
Active substance concentrations in foods-as-measured are modelled in concentration models, optionally allowing for
occurrence pattern models. In addition, processing factors and unit variability factors can be provided for further use
in dietary exposure assessment.

2.3.1 Concentration limits

Concentration limits specify (legal) limit values for substance concentrations on foods and are sometimes used as
conservative values for concentration data. In the framework of pesticides the legal Maximum Residue Limit (MRL)
is the best known example.
This module has as primary entities: Foods Substances
Output of this module is used by: Concentrations Concentration models Foods as measured

Concentration limits data formats

The concentration limits table describes limit values (e.g., MRLs) for specific food/substance combinations. This
data may be used, for instance, for the food/substance combinations for which no concentration data is available. The
food codes (idFood) and substance codes (idSubstance) should match the codes of the foods and substances table
respectively.

Concentration limits

Concentration limits are concentration limit values for specific food and substance combinations originatin from
regulations (e.g., MRLs). This data may be used, for instance, for the food/substance combinations for which no
concentration data is available.

Concentration limits

The food codes (idFood) and substance codes (idSubstance) should match the codes of the foods and substances table
respectively.
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Table 2.31: Table definition for MaximumResidueLimits.
Name Type Description Aliases Required
idFood AlphaNumeric(50) Code of the food of this

residue limit definition.
idFood, FoodId,
Food

Yes

idSubstance AlphaNumeric(50) Code of the substance of this
residue limit definition.

idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Limit Numeric Residue limit value. Limit,
Maximum-
ResidueLimit,
Maximum-
ResidueLimits,
MRL

Yes

StartDate DateTime Start date of the period during
which the limit applies.

StartDate No

EndDate DateTime End date of the period during
which the limit applies.

EndDate No

Concentration-
Unit

ConcentrationUnits The unit of the limit value
(default mg/kg).

Concentration-
Unit,
Unit

No

Table aliases: ResidueLimits, ResidueLimit, MaximumResidueLimits, MaximumResidueLimit, MRLs, MRL.

Concentration limits as data

• Concentration limits data formats

2.3.2 Concentration models

Concentration models are distributional models of substance concentrations on foods. They describe both the sub-
stance presence (yes/no, with no representing an absolute zero concentration) and the substance concentrations. Con-
centration models are specified per food/substance combination.
This module has as primary entities: Foods Substances Effects
Output of this module is used by: Dietary exposures with screening Dietary exposures

Concentration models calculation

There are a number of concentration model types are available. A basic distinction is between using the empirical
concentration data (empirical model), fitting a statistical model to the concentration data (parametric model), or to
construct a model from (conservative) limit values. Settings relevant for some of these model types as well as other
settings are described under concentration model settings.

Concentration model types

Empirical model

Data points are sampled at random from the available set. Non-detects are handled by imputation. If occurrence
patterns are used, a proportion 𝑝0/𝑝𝑁𝐷 of non-detects is set as 0. See also appendix.
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Figure 2.3: Empirical distribution

Non-detect spike lognormal model

A binomial model is used to estimate the proportion 𝑝 of positive values (detects). This is just the proportion observed
in the data (unless agricultural use data have been used to set a proportion of true zeroes). A lognormal model is
fitted to the positive data. This provides estimates of 𝜇 and 𝜎, which are the mean and standard deviation of the
natural logarithm of the concentration. Simulated concentrations are a non-detect with probability 𝑝𝑁𝐷 = 1 − 𝑝 or
a value sampled from the fitted lognormal distribution with probability 𝑝. Non-detects are handled by imputation. If
occurrence patterns are used, a proportion 𝑝0/𝑝𝑁𝐷 of non-detects is set as 0. Minimum requirements: at least two
positive concentration values. See also appendix.

Non-Detect-Spike Truncated lognormal model

A binomial model is used to estimate the proportion 𝑝 of positive values (detects). This is just the proportion observed
in the data (unless agricultural use data have been used to set a proportion of true zeroes in which case 𝑝 is calculated
on the remaining proportion). A truncated lognormal model, with LOR as the truncation limit, is fitted to the positive
data, leading to estimates of 𝜇 and 𝜎, which are the mean and standard deviation of the natural logarithm of the
concentration. Simulated concentrations are a non-detect with probability 𝑝𝑁𝐷 = 1 − 𝑝 or a value sampled from the
fitted lognormal distribution with probability 𝑝. Non-detects are handled by imputation. If occurrence patterns are
used, a proportion 𝑝0/𝑝𝑁𝐷 of non-detects is set as 0. Minimum requirements: at least two positive concentration
values, all non-detects must have one LOR value. See also appendix.

Censored Lognormal model

A censored lognormal model, with LOR as the censoring limit, is fitted to the data, both positives and non-detects.
This provides estimates of 𝜇 and 𝜎, which are the mean and standard deviation of the natural logarithm of the con-
centration. If agricultural use data are being used, then a proportion 𝑝0/𝑝𝑁𝐷 of non-detects will be excluded, where
𝑝0 will be lowered to 𝑝𝑁𝐷 if it would be higher. Simulated concentrations are sampled from the fitted lognormal
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Figure 2.4: Nondetect Spike Lognormal distribution
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Figure 2.5: Nondetect Spike Truncated Lognormal distribution
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distribution. If agricultural use data have been used, simulated concentrations are 0 with probability 𝑝0 or are sam-
pled from the fitted lognormal distribution with probability 1 − 𝑝0. Minimum requirements: at least one positive
concentration value. See also appendix.
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Figure 2.6: Censored Lognormal distribution

Zero-spike censored lognormal model

A mixture distribution of a spike of true zeroes and a censored lognormal model, with LOR as the censoring limit,
is fitted to the data (non-detects and positives. This provides estimates of 𝑝0, which is the proportion of true zeroes,
and of 𝜇 and 𝜎, which are the mean and standard deviation of the natural logarithm of the concentration. Simulated
concentrations are 0 with probability 𝑝0 and are sampled from the fitted lognormal distribution with probability 1−𝑝0.
Minimum requirements: at least one positive concentration value, no agricultural use data for the food-compound
combination (which directly specify 𝑝0, therefore it should not be estimated from the data). See also appendix.

Non-detect spike MRL model

This model simply takes values specified in an input table as Maximum Residue Limit (MRL) to be used for the
proportion of positive values in the concentration dataset, and can be used to force the use of a pessimistic value.

Summary statistics model

For this model, no individual measurements on raw agricultural commodities are needed. The final estimates of µ and
σ are simply provided or pooled or estimated using e.g. a coefficient of variation. Specific use of this model is found
in Total Diet Studies. In general, each TDS food sample is prepared only once, yielding one measurement for a TDS
food sample. The variability of the underlying distribution is unknown. However, a rough guess can be made using
the e.g. coefficient of variation of the subsamples (in general raw agricultural commodities) that compose the TDS
food sample. The estimated standard deviation is calculated as a pooled estimate using the coefficient of variation
and the count of each subsample in the TDS food.
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Figure 2.7: Zero Spike Censored Lognormal distribution

Imputation

A complication in concentration modelling occurs if results are reported as being below a limit. Different names may
be used for such a limit, e.g. limit of detection or limit of quantification. For the purpose of exposure assessment it is
only relevant whether results are reported as a positive value or as a non-detect, therefore we refer to any limit as the
Limit Of Reporting (LOR), and any result reported as ‘<LOR’ is termed a nondetect. The value of LOR should
always be known for the particular analytical method used.
Non-detects are a very common phenomenon for some classes of substances like pesticides. Non-detects can be
handled by replacing them with a given value (imputation), or by incorporating them in a parametric model. In
the imputation approach, non-detects (values reported less than LOR) can be replaced in simulations by any value
between 0 and LOR * constant.
Imputation may be also dependend on the authorisation status of a substance i.c. whether the use of a substance on
a agricultural crop is allowed or not.
In Figure 2.8 to Figure 2.11, the various scenarios are displayed. Two substances, Fenamidine and Hexythiazox are
indicated with a brown box, these substances are authorized.

No imputation

Impute all nondetects

Impute nondetects based on authorized uses

No imputation except for authorized uses

Concentration models settings
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Figure 2.8: Tier 1: Nondetects are not replaced. For Fenamidine and Hexythiazox (brown boxes) authorized use is
assumed.

Figure 2.9: All nondetects are replaced by a constant factor x LOR. For Fenamidine and Hexythiazox (brown boxes)
authorized use is assumed.
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Figure 2.10: Nondetects are replaced by a constant factor x LOR for authorized uses. For Fenamidine and Hexythi-
azox (brown boxes) authorized use is assumed.

Figure 2.11: Tier 1: Nondetects are not replaced except for authorized uses (replaced by a constant factor x LOR).
For Fenamidine and Hexythiazox (brown boxes) authorized use is assumed.
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Calculation settings

Table 2.32: Calculation settings for module Concentration models.
Name Description
Concentration model tier Custom model, or set according to EFSA Guidance 2012. Note:

you may need to set the tier separately in sub-modules.
Default concentration model The concentration model type that will be used as default for all

food/substance combinations. If this model type cannot be fitted,
e.g., due to a lack of data, a simpler model will be chosen
automatically as a fall-back.

Include MRL fallback model Use the MRL as fallback model in case the occurrence data is
insufficient for other concentration modelling options.

Restrict LOR imputation to
authorised uses

Specifies whether imputation of factor x LOR should be limited to
authorised uses only.

Non-detects replacement How to replace non-detects (when not co-modelled, as in
censored models).

Factor f (f x LOR) Replace non-detects by Limit Of Reporting (LOR) times this
factor. Constant (f), e.g. 0.5.

MRL Factor (f x MRL) Use f x MRL as concentration estimate of the MRL models.
Sample based Include co-occurrence of substances in samples in simulations. If

checked, substance residue concentrations are sampled using the
correlations between values on the same sample. If unchecked,
any correlation between substances is ignored, substance residue
concentrations are sampled ignoring the correlations between
values on the same sample.

Imputation of missing values If checked, in procedure of EFSA Guidance 2012, Appendix 1,
impute missing values using substance based concentration
models. If unchecked, missing values are not imputed (set to 0).

Correlate imputed values with
sample potency

If checked, in procedure of EFSA Guidance 2012, Appendix 1,
correlate high imputed values with high cumulative potency
samples. If unchecked, random imputation.

Use occurrence patterns for
imputation

Use of AU data is relevant for imputation of non-detects in the
concentration data. Non-detects can be imputed with zero when
an agricultural use is un-authorised (all non-detects) or when the
AU percentage is less than 100% (part of the non-detects). If
checked, AU data is expected and will be used for the imputation
of non-detects. If unchecked, 100% potential presence is assumed
for all substances on all foods.

Uncertainty settings

Table 2.33: Uncertainty settings for module Concentration models.
Name Description
Parametric uncertainty For resample concentrations: specifies whether the uncertainty

assessment is based on a parametric approach.

Concentration models tiers

In addition to the possibility for users to work with their own choices for all settings, MCRA implements four tiers
from two documents:

• The optimistic and pessimistic basic assessments from the EFSA 2012 Guidance on the Use of Probabilistic
Methodology for Modelling Dietary Exposure to Pesticide Residues [3].
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• Tier 1 and 2 from the European Commission working document SANTE-2015-10216 rev. 7 (2018) on risk
management aspects related to the assessment of cumulative exposure [37].

Overview

Table 2.34: Tier overview for module Concentration models.
Name EFSA

2012 Op-
timistic

EFSA
2012
Pes-
simistic -
Acute

EFSA
2012
Pes-
simistic -
Chronic

EC 2018
Tier 1

EC 2018
Tier 2

Default concentration
model

Empirical NonDe-
tect-
SpikeLog-
Normal

NonDe-
tect-
SpikeLog-
Normal

Empirical Empirical

Include MRL fallback
model

false true true false false

Restrict LOR
imputation to
authorised uses

false false false false

Non-detects
replacement

Replace-
ByZero

Replace-
ByLOR

Replace-
ByLOR

Replace-
ByLOR

Replace-
ByLOR

Factor f (f x LOR) 1 1 0.5 0.5
MRL Factor (f x
MRL)

1 1

Sample based true true true true true
Imputation of missing
values

false true true true true

Correlate imputed
values with sample
potency

false true true true false

Use occurrence
patterns for imputation

true true

Parametric uncertainty false true false false false

The sections below describe the settings specified by each tier in detail.

EFSA 2012 Optimistic

Use the optimisticmodel settings according to the EFSAGuidance 2012. Non-detects andmissing values are replaced
by zero.

Table 2.35: Tier definition for EFSA 2012 Optimistic.
Name Setting
Default concentration model Empirical
Include MRL fallback model false
Non-detects replacement ReplaceByZero
Sample based true
Imputation of missing values false
Correlate imputed values with sample potency false
Parametric uncertainty false
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EFSA 2012 Pessimistic - Acute

Concentration model settings for acute pessimistic dietary exposure assessments according to the EFSA Guidance
2012. A non-detect spike lognormal model is fitted to the positive residue values and non-detects are replaced by
the LOR. When the number of positives is smaller than 2, the maximum residue limit (if available) is used instead.
Missing values are imputed.

Table 2.36: Tier definition for EFSA 2012 Pessimistic - Acute.
Name Setting
Default concentration model NonDetectSpikeLogNormal
Include MRL fallback model true
Restrict LOR imputation to authorised uses false
Non-detects replacement ReplaceByLOR
Factor f (f x LOR) 1
MRL Factor (f x MRL) 1
Sample based true
Imputation of missing values true
Correlate imputed values with sample potency true
Parametric uncertainty true

EFSA 2012 Pessimistic - Chronic

Concentration model settings for acute pessimistic dietary exposure assessments according to the EFSA Guidance
2012. A non-detect spike lognormal model is fitted to the positive residue values and non-detects are replaced by
the LOR. When the number of positives is smaller than 2, the maximum residue limit (if available) is used instead.
Missing values are imputed.

Table 2.37: Tier definition for EFSA 2012 Pessimistic - Chronic.
Name Setting
Default concentration model NonDetectSpikeLogNormal
Include MRL fallback model true
Restrict LOR imputation to authorised uses false
Non-detects replacement ReplaceByLOR
Factor f (f x LOR) 1
MRL Factor (f x MRL) 1
Sample based true
Imputation of missing values true
Correlate imputed values with sample potency true
Parametric uncertainty false
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EC 2018 Tier 1

Table 2.38: Tier definition for EC 2018 Tier 1.
Name Setting
Default concentration model Empirical
Include MRL fallback model false
Restrict LOR imputation to authorised uses false
Non-detects replacement ReplaceByLOR
Factor f (f x LOR) 0.5
Sample based true
Imputation of missing values true
Correlate imputed values with sample potency true
Use occurrence patterns for imputation true
Parametric uncertainty false

Input tiers

Table 2.39: Input tiers for EC 2018 Tier 1.
Module Input tier
Occurrence patterns EC 2018 Tier 1
Concentrations EC 2018 Tier 1

EC 2018 Tier 2

Table 2.40: Tier definition for EC 2018 Tier 2.
Name Setting
Default concentration model Empirical
Include MRL fallback model false
Restrict LOR imputation to authorised uses false
Non-detects replacement ReplaceByLOR
Factor f (f x LOR) 0.5
Sample based true
Imputation of missing values true
Correlate imputed values with sample potency false
Use occurrence patterns for imputation true
Parametric uncertainty false

Input tiers

Table 2.41: Input tiers for EC 2018 Tier 2.
Module Input tier
Occurrence patterns EC 2018 Tier 2
Concentrations EC 2018 Tier 2

EFSA 2012 Pessimistic

Note: This tier is deprecated and has been replaced by separate acute/chronic tiers.
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Concentration model settings for pessimistic dietary exposure assessments according to the EFSA Guidance 2012.
A non-detect spike lognormal model is fitted to the positive residue values and non-detects are replaced by the LOR.
When the number of positives is smaller than 2, the maximum residue limit (if available) is used instead. Missing
values are imputed.

Table 2.42: Tier definition for EFSA 2012 Pessimistic.
Name Setting
Default concentration model NonDetectSpikeLogNormal
Include MRL fallback model true
Restrict LOR imputation to authorised uses false
Non-detects replacement ReplaceByLOR
Factor f (f x LOR) 1
MRL Factor (f x MRL) 1
Sample based true
Imputation of missing values true
Correlate imputed values with sample potency true
Parametric uncertainty true

Concentration models uncertainty

When using empirical distributions, concentration model uncertainty is covered by the the inputs. I.e., concentration
models can be recomputed from resampled/bootstrapped concentration data. This happens for both the univariate
concentration models, being recomputed from the bootstrapped residue collections for each food and substance, and
also for the samples of the sample-based approach that are re-generated from the bootstrapped samples (including
the necessarry steps of missing value imputation and imputation of non-detects).
When parametric uncertainty is prefered over emperical bootstrapping, the parameters of the univariate concentration
models fitted as a parametric distributions can be resampled parametrically.
Let 𝑥 denote a random variable from the specified distribution. The log transformed variable 𝑦 = 𝑙𝑛(𝑥) is normally
distributed with mean 𝜇𝑦 and variance 𝜎𝑦. The maximum likelihood estimates are ̂𝜇𝑦 and 𝜎̂𝑦. In each bootstrap
sample, values are drawn from a normal distribution where the maximum likelihood estimates are replaced by ( ̂𝜇∗

𝑦,
𝜎̂∗

𝑦).

Calculation of concentration models

Concentration models can be computed from concentration data.
• Concentration models calculation

Inputs used: Concentrations Concentration limits Foods as measured Occurrence patterns Relative potency factors
Settings used

• Calculation Settings

2.3.3 Concentrations

Concentrations data are analytical measurements of chemical substances occurring in food samples. In their simplest
form, concentration data can just be used as provided by datasets. Optionally, concentrations data can be manipulated
for active substances, extrapolated to other foods, and/or default values can be added for water.
This module has as primary entities: Foods Substances
Output of this module is used by: Occurrence patterns Concentration models Foods as measured
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Concentrations data formats

Three schemes for data are implemented:
1. MCRA scheme: relational tables that can hold all information about Food samples (e.g. sampling date and

location), Analytical methods, Analytical method properties for substances (e.g. LOR), Analysis samples (e.g.
analysis date) and Concentrations;

2. SSD scheme: data according to the EFSA Standard Sample Description (SSD) guideline; SSD data are con-
verted automatically to the MCRA scheme;

3. Tabulated data scheme: simplified data format, where samples and analytical methods are not explicitly spec-
ified.

Concentration data

In this group all tables are collected that store information related to concentration or concentration related entities.

Sample-based concentration data

This sub-group contains five tables to specify food samples, analytical methods, their properties for given substances,
analyses and concentrations.

Analytical methods

The analytical methods used for analyzing the samples are recorded in the analytical methods table. Each analyt-
ical method should have a unique identification code (idAnalyticalMethod). The description field may be used for
a more detailed description of the analytical method. The records of this table should be linked to one or more
analytical-method-substance records, which record the substances that are measured by this method (and their limits
of reporting).

Table 2.43: Table definition for AnalyticalMethods.
Name Type Description Aliases Required
idAnalytical-
Method

AlphaNumeric(50) The code for the method of
analysis.

idAnalytical-
Method,
Analytical-
MethodId,
Analytical-
MethodName,
Id

Yes

Description AlphaNumeric(200) Additional description of
method of analysis.

Description No

Table aliases: AnalyticalMethod, AnalyticalMethods.
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Analytical method properties for substances

Table 2.44: Table definition for AnalyticalMethodCompounds.
Name Type Description Aliases Required
idAnalytical-
Method

AlphaNumeric(50) The code of method of
analysis.

idAnalytical-
Method,
Analytical-
MethodName,
Analytical-
MethodId

Yes

idSubstance AlphaNumeric(50) The substance code. idSubstance,
SubstanceId,
Substance

Yes

LOR Numeric The limit of reporting (LOR).
In MCRA, LOR just means
the limit below which no
quantitative result has been
reported. Depending on a
laboratory’s format of
reporting, LOR may be a
limit of detection (LOD), a
limit of quantification (LOQ)
or another limit.

LOR Yes

Concentration-
Unit

ConcentrationUnits The unit of the
concentrations/LORs
reported by the analytical
method for this substance
(default mg/kg).

Concentration-
Unit, Units,
Unit

No

Table aliases: AnalyticalMethodSubstances, AnalyticalMethodSubstance.

Food samples

Food sample for analysis of concentrations. May be characterised by location and/or date of sampling. A sample can
be analysed multiple times, the results per analysis are stored as analysis samples.

Table 2.45: Table definition for FoodSamples.
Name Type Description Aliases Required
idFoodSample AlphaNumeric(50) The identification number of

the food sample.
idFoodSample,
idSample,
SampleId, Id

Yes

idFood AlphaNumeric(50) The food code. idFood, FoodId,
Food, FoodCode

Yes

Location AlphaNumeric(50) The location or country code,
sampling location.

Location,
Location-
Sampling,
Sampling-
Location,
Country

No

DateSampling DateTime The date of sampling. DateSampling,
SamplingDate

No

Table aliases: FoodSamples, FoodSample, Samples, Sample, PrimarySample, PrimarySamples.
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Sample properties

Food sample properties, additional columns that can also be specified as additional columns in the food samples table

Table 2.46: Table definition for SampleProperties.
Name Type Description Aliases Required
Name AlphaNumeric(50) The name of the property. Id Yes

Table aliases: SampleProperties, SampleProperty.

Sample property values

Food sample property values, additional columns that can also be specified as additional columns in the food samples
table

Table 2.47: Table definition for SamplePropertyValues.
Name Type Description Aliases Required
idSample AlphaNumeric(50) The identification number of

the food sample.
Id Yes

PropertyName AlphaNumeric(50) The name of the property. Name Yes
TextValue AlphaNumeric(50) The value of the property as

text value.
No

DoubleValue Numeric The value of the property as
number.

No

Table aliases: SamplePropertyValues, SamplePropertyValue.

Sample Analyses

An analysis sample specifies the analysis of a sample by an analytical method. A sample can be analysed multiple
times, the results per analysis are stored as analysis samples.

Table 2.48: Table definition for AnalysisSamples.
Name Type Description Aliases Required
idSample-
Analysis

AlphaNumeric(50) The identification number of
the analysed sample.

id, idSample-
Analysis,
SampleAnalysis,
idAnalysis-
Sample,
AnalysisSample-
Id

Yes

idFoodSample AlphaNumeric(50) The identification number of
the food sample.

idFoodSample,
idSample,
SampleId,
Sample

Yes

idAnalytical-
Method

AlphaNumeric(50) The code of method of
analysis.

idAnalytical-
Method,
Analytical-
MethodId

Yes

DateAnalysis DateTime The date of the analysis. DateAnalysis,
AnalysisDate,
Date

No

Table aliases: AnalysisSamples, AnalysisSample, SampleAnalysis, SampleAnalyses.
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Sample concentrations

The positive concentration values for substances from analysis in the unit specified in table AnalysisSamples. Non-
detects (i.e. results ‘less than LOR’) are not included, their existence can be inferred from the tables AnalysisSamples
and AnalyticalMethodSubstances, and the LOR itself from the table AnalyticalMethods.

Table 2.49: Table definition for ConcentrationsPerSample.
Name Type Description Aliases Required
idSample-
Analysis

AlphaNumeric(50) The identification number of
the analysed sample.

idSample-
Analysis,
SampleAnalysis,
idAnalysis-
Sample,
AnalysisSample-
Id

Yes

idSubstance AlphaNumeric(50) The substance code. idSubstance,
SubstanceId,
Substance

Yes

Concentration Numeric The measured concentration. Concentration Yes

Table aliases: SampleConcentrations, ConcentrationsPerSample, ConcentrationPerSample.

Tabulated concentration data

Tabulated concentration data provide a simplified concentration data format, where samples and analytical methods
are not explicitly specified and analysis results can be tabulated for repeats of the same outcome. This is a convenient
data format for single-substance analyses, but it should be noted that it is not possible to use this data in sample-based
methods of multiple substances, because it does not record co-occurrence information of substances in samples.

Tabulated concentrations

In the tabulated concentration data table, each sample has a unique identifier and contains a concentration value for a
food/substance combination. Non-detects (i.e. results ‘less than LOR’) are specified as negative values, i.e. ‘less than
LOR’ should be specified as minus the LOR value.
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Table 2.50: Table definition for ConcentrationTabulated.
Name Type Description Aliases Required
GUID AlphaNumeric(50) Unique identifier of the

analysis sample of this
tabulated concentration
record.

idAnalysis-
Sample,
SampleId,
SampleCode,
Code, Id

No

idSubstance AlphaNumeric(50) The code of the substance of
this concentration value.

idSubstance,
SubstanceId,
Substance

Yes

idFood AlphaNumeric(50) The food code. idFood, FoodId,
FoodMeasured,
Food

Yes

DateSampling AlphaNumeric(10) The date of sampling. DateSampling No
SamplingType AlphaNumeric(50) The type of sampling

(monitoring).
SamplingType No

Location AlphaNumeric(50) The location or country of
sampling.

Location,
Country

No

NumberOf-
Samples

Integer The count of the number of
times the specified
concentration or limit of
reporting (LOR) occurs.

NumberOf-
Samples

Yes

Concentration Numeric The concentration or LOR.
LORs are specified using a
minus (-) sign.

Concentration,
Value

Yes

Concentration-
Unit

ConcentrationUnits The unit of the specified
concentrations/LORs (default
mg/kg).

Concentration-
Unit,
Unit

No

Table aliases: ConcentrationTabulated, ConcentrationValues, TabulatedConcentrations, TabulatedConcentration.

EFSA SSD concentration data

MCRA provides an option to upload concentration data that is formatted according to the EFSA Standard Sample
Description (SSD) guideline. SSD formatted concentrations data is converted to the internal, relational data format
of MCRA.

SSD concentrations

MCRA uses the concept of samples analysed by analytical methods, where the analytical method is characterised
by the substances analysed and the LORs for these substances. However, the SSD data do not provide information
on the analytical methods at this level of detail. Therefore, from the provided SSD records, analytical methods are
reconstructed and samples are linked to these analytical methods. All SSD records with the same labSampCode
and labSubSampCode are considered to be from the same sample. All SSD samples that have records for the same
substances, with the same LOQ/LOD values and resUnit are considered to originate from the same reconstructed
analytical method. If both LOQ and LOD are provided, LOQ is used as LOR of the reconstructed analytical method.
It is highly recommended to supply LOQ/LOD values, even for positive measurement, because this reduces the
number of reconstructed analytical methods.
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Table 2.51: Table definition for ConcentrationsSSD.
Name Type Description Aliases Required
labSampCode AlphaNumeric(30) Code of the laboratory

sample. MCRA will use the
combination of labSampCode
and labSubSampCode as
unique code for a sample.

labSampCode Yes

labSubSamp-
Code

AlphaNumeric(4) Code of the laboratory
sub-sample. MCRA will use
the combination of
labSampCode and
labSubSampCode as unique
code for a sample.

labSubSamp-
Code

No

sampCountry AlphaNumeric(2) Two-letter code to identify
the country of sampling.

sampCountry Yes

prodCode AlphaNumeric(20) Code identifying the food as
measured. Should be equal to
a code idFood in the Foods
table.

prodCode Yes

sampY Integer(4) Year of sampling. sampY Yes
sampM Integer(2) Month of sampling. sampM No
sampD Integer(2) Day of sampling. sampD No
analysisY Integer(4) Year of analysis. analysisY Yes
analysisM Integer(2) Month of analysis. analysisM No
analysisD Integer(2) Day of analysis. analysisD No
paramCode AlphaNumeric(20) Code identifying the

substance.
paramCode Yes

resUnit AlphaNumeric(5) Unit of residue measurement. resUnit Yes
resLOD Numeric Residue Limit Of Detection.

Required if resType is LOD.
MCRA will use resLOD as
LOR if resLOQ is not
provided.

resLOD No

resLOQ Numeric Residue Limit Of
Quantification. Required if
resType is LOQ MCRA will
use resLOQ as LOR if
provided.

resLOQ No

resVal Numeric Required if resType is VAL. resVal No
resType AlphaNumeric(3) Type of residue data. Should

be VAL, LOQ or LOD.
resType Yes

Table aliases: ConcentrationsSSD, SSDConcentrations.

Concentration distributions

Substance concentrations on foods specified in the form of summary statistics.
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Table 2.52: Table definition for ConcentrationDistributions.
Name Type Description Aliases Required
idFood AlphaNumeric(50) Food code, the raw

agricultural commodity.
idFood Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Mean Numeric The mean of (monitoring)
samples, on the original scale
(in mg/kg).

Mean Yes

CV Numeric Coefficient of variation, for
samples of the size of the
TDS pooled amount.

CV No

Percentile Numeric The percentile at the point
specified by the percentage.

Percentile No

Percentage Numeric The percentage that belongs
to the given the percentile,
e.g., 95 (in mg/kg).

Percentage No

Limit Numeric The specified norm value or
limit value (in mg/kg).

Limit No

Concentration-
Unit

ConcentrationUnits The unit of the limit value
(default mg/kg).

Concentration-
Unit,
Unit

No

Table aliases: ConcentrationDistributions, ConcentrationDistribution.

Concentrations calculation

Substance conversions data may be used to convert concentration data at the level of measured substances to con-
centration data at the level of potentially active substances. These rules may be applicable, e.g., when a measured
substance represents multiple substances and measurements of this measured substance should be converted into
measurement values for these substances. This conversion may depend on substance authorisations which provides
information on the likelihood of certain translations to occur and one may need points of departure or relative potency
factors when the substance conversion should select the most toxic candidate in case a measured substance translates
to multiple active substances.
In some cases, it may be that for a certain food/substance combination, there are few measurements in the concen-
tration data. In this case, extrapolation of concentration data may be desired. If this is the case, food extrapolation
rules may be provided to specify per food, the alternative foods from which extrapolation is allowed. The extrapola-
tion of concentrations will then be performed within this module and the results are included in the resulting active
substance concentrations data. Substance authorisations and/or concentration limitsmay be used to further restrict the
to-food/from-food combinations per substance for which extrapolation is possible.
Concentration data for water are often not available in the concentrations data, but it may be desirable to include water
concentrations in the assessments. For this, imputation of low-tier, deterministic estimates of water concentrations of
the most toxic substances may be used to include (typically conservative) estimates in the calculations.

Substance conversion

When concentration data at the level of measured substances have to be converted to concentration data at the level
of active substances, then substance conversions should be specified to provide the rules for deriving active or inactive
substance concentrations from measured substance concentrations. This section will first describe the basic substance
conversion, and following this the way in which substance authorisations can be used to refine these calculations.
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For each measured substance in the concentration data, there may be zero or more conversion rules (records in the
data source), each linking to an active or inactive substance. Note that the substance conversion procedure has been
implemented for two cases:

1. Measured substances link to one or more exclusive substances which are possible translations (i.e. the measured
concentration is assumed to be the sum of concentrations for all linked substances, but it is assumed that only
one substance is present in the sample, therefore the measured substance is considered to be one of the linked
substances);

2. Measured substances link to one or more exclusive substances plus one (non-exclusive) substance that is a
metabolite of the others. The metabolite can occur together with any of the exclusive substances.

It is assumed that either all conversion rules linked to a measured substance are marked as exclusive (case 1), or
precisely one rule is marked as exclusive and the other rules are marked as not exclusive (case 2). If this is not the
case for any set of rules linked to a measured substance, then this is regarded as erroneous data.
For each measured substance concentration measurement on a food sample (positive or non-detect), the active sub-
stance concentration allocation is done using the following procedure:

1. If there is no conversion rule available for the measured substance linked to any active substance of interest,
then no conversion is required. The measured substance is ignored in the active substance concentrations set,
unless it is an active substance itself.

2. If there are conversion rules available for the measured substance, then concentrations (positive or non-detect)
are converted from the measured substance to one or more linked substances as specified by the conversion
rules. Two substance allocation methods are available, one of which should be selected:

Tier 1) Most potent: For each measured substance, the linked substances are restricted to the active substances of
interest. The concentration of the measured substance is assigned to the most potent active substance in this set.
Potency is specified by the relative potency factors. All other candidate active substances are assigned a zero concen-
tration. I.e., the measured substance concentration is allocated for 100% to the most potent substance specified by the
conversion rules and for this allocation, the concentration or LOR is multiplied by the molecular weight correction
factor.
Tier 2) Random: One of the conversion rules is drawn randomly (with equal probability), including the rules of both
active and other substances. This drawn rule is used as follows to generate active substance concentrations:

• If the drawn conversion rule is marked as exclusive, the concentration or LOR is allocated to
the linked substance.

• If the drawn conversion rule is marked as not exclusive, a proportion p, specified by the drawn
conversion rule, of the concentration or LOR is allocated to the linked substance. The remaining
proportion (1-p) is allocated to one other substance, which is the substance that is linked to the
measured substance in a conversion rulemarked as exclusive (in this case it is assumed that precisely
one record per measured substance is marked as exclusive).

In Tier 2 all assigned concentrations are multiplied by the molecular weight correction factor. All un-
selected candidate substances are assigned a zero concentration. After allocation, the resulting set of
substance concentrations is restricted to contain only concentrations for the active substances of interest.

(Included for research purposes) Nominal: The substances specified through the conversion rules are allocated
a nominal value based on all possible conversion rules. This may be regarded as the nominal or average allocation
value of the random sampling method.

• All conversion rules are marked as exclusive: The measured substance concentration is divided over all n
active substances specified with equal proportions 1/n, accounting for the molecular weight correction factor
for all substances.

• Precisely one conversion rule is marked exclusive and n conversion rules are marked as not exclusive:
The measured substance concentration is divided over all active substances specified, with a proportion 1/2
+ 1/n for the substance belonging to the exclusive conversion rule, and equal proportions 1/n for the other
substances, accounting for the molecular weight correction factor for all substances.
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Use of substance authorisations in substance conversion

When substance authorisations are available, then these can be used to exclude conversions of measured substances to
unauthorised substances on a given food. The information is used as follows in the substance conversion procedures:

Option 1) Most potent: The set of candidate active substances from which the most potent active
substance is to be drawn is reduced to only the substances with authorised uses. However, if none of the
candidate active substances is authorised, then the most potent of the unauthorised substances is selected
for active substance allocation.
Option 2) Random: The set of conversion rules from which to draw is reduced to the rules linking
to authorised substances or the non-exclusive substance (thus allowing the selection of a possibly unau-
thorised metabolite of an authorised substance). If none of the conversion rules links to an authorised
substance, then one rule is drawn from the full set of all (unauthorised) conversion rules.
Nominal: The set of conversion rules is reduced in the same way as in Tier 2. Nominal calculation is
performed on the resulting set of conversion rules.

Food extrapolation

If the food extrapolation setting has been checked, extrapolation of concentrations is performed for all food/active
substance combinations for which:

1. the number of measurements in the analytical scope is smaller than a given threshold for extrapolation (default
10), and

2. there is an extrapolation rule allowing extrapolation of concentrations from one or more other foods (the from-
food(s)) to the given food (the to-food), and

3. (optional criterion:) the substance is associated with authorised use for both foods, and
4. (optional criterion:) concentration limits (e.g. MRLs) on the from-food and to-food exist and are equal. Note:

if the active substance is not a measured substance, then the MRL check has to be made per measurement
at the level of the measured substance which provided the concentrations assigned to the active substance.

Food extrapolation is performed by one of the following procedures: 1) Substance-specific imputation of missing
values by extrapolated measurements, or 2) Extrapolation of complete samples for multiple substances.

1. Substance-specific imputation of missing values by extrapolated measurements

The missing values in the active substance concentrations of the tofood are imputed in a random order by active
substance concentrations (positive, nondetect or zero) from a randomised list obtained from the fromfood(s). By
matching the randomised lists, each fromfood measurement is assigned at most once, so after extrapolation there
may still be missing values left, or not all measurements of the from-food(s) may have been used for extrapolation.
Note: In this method, it is assumed that the to-food has a sufficient number of samples. No extrapolation is applied
for foods with no samples at all, and data gaps will also remain for foods with fewer than n samples, because no new
samples are added.
Note: the resulting occurrence patterns will be random with respect to the extrapolated substances, i.e., observed
occurrence patterns for the from-food are not extrapolated to the to-food.

2. Extrapolation of complete samples for multiple substances

(not yet implemented)
All samples of the from-food(s), i.e., complete samples with data for all active substances, are copied as samples
for the to-food and added to the existing to-food samples. For example, extrapolate all apple sample records to the
available pear sample records. However, measurements for substances that do not fulfill the (optional) criteria 3 and
4 above are non-valid extrapolations and are replaced by missing values. The status of the extrapolated samples is
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stored to distinguish between extrapolated and non-extrapolated sample records. Note that this method maintains
correlations in the occurrence patterns and postpones imputation of MVs until the concentration models step.

Water imputation

If water has been selected as an additional source of exposure, but concentration data is missing, then, fixed concen-
tration values can be assigned to water for the five most toxic active substances, with the toxicity ranking being based
on the relative potency factors. For all other substances, zero concentrations are imputed. The default imputation
value is 0.05 µg/L, but this value can be chosen as a setting. If specified, substance authorisations may be used to re-
strict to the set of active substances for which water concentrations are imputed to only those for which concentrations
may be expected from authorised use.

Concentrations settings

68 Chapter 2. Modules



MCRA Documentation, Release 9.0

Selection settings

Table 2.53: Selection settings for module Concentrations.
Name Description
Concentrations tier Specifies the concentration data should be treated according to a

pre-defined tier or custom.
Filter samples exceeding the
concentration limits

If true, samples with at least one substance concentration higher
than some factor (concentration limit filter exceedance factor)
times the MRL are filtered out.

Concentration limit filter
exceedance factor

The multiplication factor for the concentration limit exceedance
filter.

Use substance conversions If true, concentrations are modelled in terms of active substances
(using substance conversion).

Substance conversion method Allocation method for assigning active substance concentrations
from measured substance concentrations based on substance
translations.

Retain all allocated substances
after active substance allocation

If true, all allocated substances kept after substance conversion, if
false, the concentration data is restricted to the active substances
of the assessment group.

Account for substance
authorisations in substance
conversions

Account for substance authorisations when allocating measured
substances to active substance using substrance conversions.

Use extrapolation rules Use extrapolation rules to extrapolate food samples for foods with
a limited amount of sapmles (data poor foods) from other foods
(data rich foods).

Threshold for extrapolation Threshold for extrapolation.
Restrict extrapolations to equal
MRLs

Restrict extrapolations to equal MRLs.

Restrict extrapolations to
authorised uses

Only extrapolate if substance use is authorised.

Impute water concentrations Impute constant concentration values for the five most toxic
substances on the selected (water) commodity.

Water commodity The commodity for which constant concentration values should be
added.

Water concentration value
(µg/kg)

Constant concentration value that should be used for water (in
µg/kg).

Restrict water imputation to
authorised uses

Restrict water imputation to authorised uses.

Use focal commodity Specifies whether there is monitoring data that should replace part
of the consumption data for the specified focal commodities.

Focal commodity
concentrations replacement
method

Replacement method to be used for replacing base concentration
data with concentration data of the focal commodity/commodities
concentrations.

Uncertainty settings

Table 2.54: Uncertainty settings for module Concentrations.
Name Description
Resample concentrations Specifies whether concentrations are resampled by empirical

bootstrap or using a parametric uncertainty model.
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Concentrations tiers

In addition to the possibility for users to work with their own choices for all settings, MCRA implements Tier 1 and 2
from the European Commission working document SANTE-2015-10216 rev. 7 (2018) on risk management aspects
related to the assessment of cumulative exposure.

Overview

Table 2.55: Tier overview for module Concentrations.
Name EC 2018

Tier 1
EC 2018
Tier 2

Filter samples exceeding the concentration limits false false
Substance conversion method UseMost-

Toxic
DrawRan-
dom

Retain all allocated substances after active substance allocation true true
Account for substance authorisations in substance conversions false true
Use extrapolation rules true true
Threshold for extrapolation 10 10
Restrict extrapolations to equal MRLs true true
Restrict extrapolations to authorised uses true true
Impute water concentrations true true
Water concentration value (µg/kg) 0.1 0.05
Restrict water imputation to authorised uses false false

EC 2018 Tier 1

Table 2.56: Tier definition for EC 2018 Tier 1.
Name Setting
Filter samples exceeding the concentration limits false
Substance conversion method UseMostToxic
Retain all allocated substances after active substance allocation true
Account for substance authorisations in substance conversions false
Use extrapolation rules true
Threshold for extrapolation 10
Restrict extrapolations to equal MRLs true
Restrict extrapolations to authorised uses true
Impute water concentrations true
Water concentration value (µg/kg) 0.1
Restrict water imputation to authorised uses false
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EC 2018 Tier 2

Table 2.57: Tier definition for EC 2018 Tier 2.
Name Setting
Filter samples exceeding the concentration limits false
Substance conversion method DrawRandom
Retain all allocated substances after active substance allocation true
Account for substance authorisations in substance conversions true
Use extrapolation rules true
Threshold for extrapolation 10
Restrict extrapolations to equal MRLs true
Restrict extrapolations to authorised uses true
Impute water concentrations true
Water concentration value (µg/kg) 0.05
Restrict water imputation to authorised uses false

Concentrations uncertainty

Uncertainty due to a limited number of samples can be accounted for by resampling/bootstrapping. Resampling is
done on a sample-based basis preserving co-occurrence of substance residue values on the same sample for multiple-
substance analyses.

Concentrations as data

Concentration data can be entered using the internal, relational data format or using the EFSASSD format. Depending
on the settings, the entered concentration data can be pre-processed for conversion to active substances, extrapolation
to other foods, and/or default values can be added for water.

• Concentrations data formats

• Concentrations calculation

Inputs used: Focal food concentrations Food extrapolations Substance conversions Relative potency factors Substance
authorisations Active substances Concentration limits

2.3.4 Focal food concentrations

In some cases the attention in an assessment is on a specific food (focal food), against the background of other foods.
Focal food concentrations are separate concentration data for one or more focal food commodities, that will take the
place of any other concentration data for the focal food in the ordinary concentration data.
This module has as primary entities: Foods Substances
Output of this module is used by: Concentrations

Focal food concentrations data formats

See concentration data formats.

Focal food concentrations
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Selection settings

Table 2.58: Selection settings for module Focal food concentrations.
Name Description
Focal commodity foods The foods for which background concentration data are to be

replaced by focal commodity concentrations.

Focal food concentrations as data

Focal food concentrations are concentration data and specified in the exact same manner. The difference is that this
data will be used to replace part of the concentration data in order to combine specific concentration data with a
background of ordinary concentration data.

• Focal food concentrations data formats

2.3.5 Food extrapolations

Food extrapolations data specify which foods (data rich foods) can be used to impute concentration data for other
foods with insufficient data (data poor foods).
This module has as primary entities: Foods
Output of this module is used by: Concentrations Food conversions

Food extrapolations data formats

Food extrapolations

Food extrapolations (or read-across food translations) can be used to specify whether data (e.g, occurrence data) on
a food for which this is missing (a data poor food) may be extrapolated from another food for which data is available
(read-across food).

Food extrapolations

Food extrapolations are simply specified as combinations of two food codes. One code for the food for the data poor
food, and one for the data rich food (or read-across food).
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Table 2.59: Table definition for FoodExtrapolations.
Name Type Description Aliases Required
DataPoorFood AlphaNumeric(50) The code of the data poor

food. I.e., the food for which
missing data is allowed to be
extrapolated.

IdFoodData-
Poor,
FoodDataPoor,
idFromFood,
FromFoodId,
FromFood,
FoodFrom,
Food, IdFood

Yes

CodeDataRich-
Food

AlphaNumeric(50) The code of the read-across
food (or data rich food). I.e.,
the food from which data is
used for extrapolation.

IdFoodData-
Rich,
FoodDataRich,
IdFoodRead-
Across,
FoodRead-
Across,
IdReadAcross-
Food,
ReadAcross-
Food, idToFood,
ToFoodId,
ToFood, FoodTo

Yes

Table aliases: ReadAcrossFoodTranslations, ReadAcrossFoodTranslation, ReadAcrossTranslations,
ReadAcrossTranslation, FoodExtrapolations, FoodExtrapolation.

Food extrapolations as data

Food extrapolations are specified as data in the form of simple tuples of data rich food and data poor food for which
extrapolation is allowed/reasonable.

• Food extrapolations data formats

2.3.6 Foods as measured

Foods as measured are foods within the foods scope for which concentration data of substances are available (or
expected).
This module has as primary entities: Foods Substances
Output of this module is used by: Concentration models Food conversions

Foods as measured calculation

Foods asmeasured, or modelled foods, are the foods within the foods scope for which concentration data of substances
are available (or expected). Foods as measured are derived primarily from concentration data. That is, all foods for
which food samples are available in the concentration data are considered to be foods-as-measured. In addition, this
set may be extended when concentration limits such as MRLs are available (see calculation settings) and/or when food
extrapolation rules are used. Foods for which such data is available are considered to be foods as measured. The set
of foods as measured can also be restricted by omitting foods with only non-detect measurements (see calculation
settings).
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Foods as measured settings

Calculation settings

Table 2.60: Calculation settings for module Foods as measured.
Name Description
Include foods with only
non-detect measurements

Specifies whether foods with only non-detect measurements are
part of the exposure assessment (default yes).

Include foods without
occurence data but with
specified maximum residue
limits

Include foods without concentration data but for which for which
concentration limits such as MRLs are defined (default: no).

Food-as-measured subset:
restrict to specific
foods-as-measured

If checked, then the assessment is restricted to the specified
foods-as-measured.

Selected foods-as-measured Set of measured foods that are of particular interest.

Calculation of foods as measured

Foods-as-measured are computed from occurrence of concentration data and (if specified) availability of maximum
residue limits.

• Foods as measured calculation

Inputs used: Concentrations Concentration limits
Settings used

• Calculation Settings

2.3.7 Occurrence patterns

Occurrence patterns (OPs) are the combinations (or mixtures) of substances that occur together on foods and the
frequencies of these mixtures occurring per food, expressed in percentages. In the context of pesticides, occurrence
patterns can be associated with agricultural use percentages. Occurrence patterns are relevant to account for co-
occurrence of active substances in exposed individuals. Occurrence patterns may be specified as data or modelled
based on observed patterns of positive concentrations.
This module has as primary entities: Foods Substances
Output of this module is used by: Concentration models

Occurrence patterns data formats

Agricultural uses

Agricultural use percentages for plant protection products (PPPs) may be of use for concentration modelling, as
they provide information about what substance mixtures can be expeceted to be present simultaneously on food
samples. Especially for non-detect concentration measurements, this information may aid to determine whether the
non-detect measurement originated from a true zero or may be a positive measurement below the limit of detection.
Agricultural use percentages can be specified using the agricultural uses and agricultural use substances table. This
data format expects agricultural use percentages to be specified for mixtures of substances. Each mixture has an
id (idAgriculturalUse) and a list of substances that are part of this mixture (agricultural use substances). These
agricultural uses are assumed to be exclusive (i.e., only one mixture or PPP is used per sample). Hence, the sum of
the agricultural uses for one food should not exceed 100%.
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Agricultural uses

The AgriculturalUses contains the definitions of the agricultural use mixtures, or PPPs and the specification of the
percentage of the products treated with this mixture. Optionally also the time period of the use percentage may be
specified.

Table 2.61: Table definition for AgriculturalUses.
Name Type Description Aliases Required
idAgricultural-
Use

AlphaNumeric(50) The unique identification code
of the agricultural use group /
plant protection product
(PPP).

idAgricultural-
Use,
AgriculturalUse-
Id,
Id

Yes

idFood AlphaNumeric(50) The food code. idFood, FoodId,
Food

Yes

Location AlphaNumeric(50) The location or country code,
agricultural use location.

Country,
Location

No

StartDate DateTime StartDate No
EndDate DateTime EndDate No
Percentage-
CropTreated

Numeric The percentage agricultural
use (%).

PercentageCrop-
Treated,
Percentage,
PercCrop-
Treated,
PercentageUse

Yes

Table aliases: AgriculturalUses, AgriculturalUse.

Agricultural use substances

The agricultural use substances table records the substances that are part of the agricultural use mixtures (PPPs).

Table 2.62: Table definition for AgriculturalUsesHasCompounds.
Name Type Description Aliases Required
idAgricultural-
Use

AlphaNumeric(50) The agricultural use code,
normally a code for a
combination of authorised
substances.

idAgricultural-
Use,
AgriculturalUse-
Id

Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Table aliases: AgriculturalUseHasSubstances, AgriculturalUsesHasSubstances, AgriculturalUseSubstances,
AgriculturalUseGroups, AgriculturalUseGroup.

Occurrence patterns calculation

Assumptions can be made for each food on the basis of findings in concentration data.
Tier 1: 0% occurrence is assumed for all substances with no positive concentrations at all; 100% occur-
rence is assumed for all substances with at least one positive concentration;
Tier 2: 0% occurrence is assumed for all substances with no positive concentrations at all; for substance-
food combinations with at least one positive (finding), use findings patterns to implement a specific
interpretation of Option 5 in the SANTE document, as described below.
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Therefore in both tiers, substance-food combinations without any positive finding are handled in the optimistic way
by assuming absolute zeroes for any non-detect observation.
If Tier 2 is selected, then for each of the modelled foods a tabulation is made of the observed frequencies of positives
for all substance combinations (including the empty set), based on the active substance concentrations. For an OP
consisting of just one substance, the basic frequency is the number of samples with a positive concentration divided by
the number of samples where the substance has been measured (i.e., is not a MV). For an OP consisting of multiple
substances, the basic frequency is the number of samples with all concentrations positive for the members divided by
the number of samples where all members of the set have been measured.
After calculation of the basic frequencies for all occurrence patterns, these frequencies are rescaled such that the
overall sum of frequencies is 100%. When substance authorisations are available, then patterns involving unauthorised
substances are not rescaled and only those patterns for which all substances are authorised are rescaled such that the
sum of all frequencies is 100%.
Note: the Tier 2 procedure is not what is literally written in the SANTE document, but is an interpretation agreed
upon by EFSA and RIVM. An alternative model, not yet implemented, but perhaps more in line with the text of the
SANTE document, would be to double the basic frequencies to modelled occurrence pattern frequencies. Only if the
sum of all frequencies becomes larger than 100%, the set of frequencies would be normalised to 100% sum.

Occurrence patterns settings

Selection settings

Table 2.63: Selection settings for module Occurrence patterns.
Name Description
Associate the unspecified
percentage with no-occurrence
for foods with at least one
specified occurrence pattern

If checked, for foods with at least one specified occurrence
pattern, unspecified occurrence patterns for the same food are
assumed to be associated with no use. If unchecked, all
substances are considered to be authorised (potentially present in
samples). Note that this setting cannot be used for foods that have
no specified AUs. These foods have 100% potential presence of
all substances. To declare all AUs on such a food un-authorised,
include an empty AU with percentage 100% in the AU data table
(i.e., use an AU for this food, without specifying substances in the
AU Substances table)

Apply occurrence pattern
percentages

If checked, use the percentages of potential presence as specified
by the occurrence patterns. If unchecked, 100% potential
presence in samples is assumed for all substances identified by the
occurrence patterns.

Scale up use percentages to
100%

Scale up use percentages to 100%.

Restrict use percentage
up-scaling to authorised uses

Restrict use percentage up-scaling to authorised uses.

Uncertainty settings

Table 2.64: Uncertainty settings for module Occurrence patterns.
Name Description
Recompute occurrence
patterns

Specifies whether occurrence patterns should be recomputed in
the uncertainty runs.

Occurrence patterns tiers
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Overview

Table 2.65: Tier overview for module Occurrence patterns.
Name EC 2018

Tier 1
EC 2018
Tier 2

Apply occurrence pattern percentages false true
Scale up use percentages to 100% true
Restrict use percentage up-scaling to authorised uses true

EC 2018 Tier 1

Table 2.66: Tier definition for EC 2018 Tier 1.
Name Setting
Apply occurrence pattern percentages false

Input tiers

Table 2.67: Input tiers for EC 2018 Tier 1.
Module Input tier
Concentrations EC 2018 Tier 1

EC 2018 Tier 2

Table 2.68: Tier definition for EC 2018 Tier 2.
Name Setting
Apply occurrence pattern percentages true
Scale up use percentages to 100% true
Restrict use percentage up-scaling to authorised uses true

Input tiers

Table 2.69: Input tiers for EC 2018 Tier 2.
Module Input tier
Concentrations EC 2018 Tier 2

Occurrence patterns as data

Occurrence patterns can be provided as data by specification of the occurrence mixtures and their associated occur-
rence/agricultural use percentages.

• Occurrence patterns data formats

Inputs used: Concentrations Substance authorisations Active substances
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Calculation of occurrence patterns

Occurrence patterns can be computed from the observed patterns of positive concentrations in the concentration data.
• Occurrence patterns calculation

2.3.8 Processing factors

Processing factors are multiplication factors to derive the concentration in a processed food from the concentration
in an unprocessed food and can be specified for identified processing types (e.g., cooking, washing, drying). Process-
ing factors are primarily used in dietary exposure assessments to correct for the effect of processing on substance
concentrations in dietary exposure calculations.
This module has as primary entities: Foods Substances
Output of this module is used by: Food conversions Dietary exposures

Processing factors data formats

Processing factors connect two food codes, one for the processed food and one for the unprocessed food. There are
two schems to make this connection:

1) specify the two food codes and the processing type, or
2) use food facets, i.e. specify only the code of the unprocessed food and the processing type (facet), the code of

the processed food is defined by the other two.

Processing factors

Processing factors are defined for triplets of processing type, food, and substance. The processing types are defined
in the processing types table and the processing factors are defined in the processing factors table.

Processing factors

Processing factor records should be linked to processing types using the processing type code (idProcessingType)
and for the foods and substances. The codes of the processing factor records should match the codes of the foods,
substances, and processing type definitions.
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Table 2.70: Table definition for ProcessingFactors.
Name Type Description Aliases Required
idProcessing-
Type

AlphaNumeric(50) The code of the processing
type.

idProcessing-
Type,
ProcessingType-
Id,
ProcessingType,
ProcType

Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

No

idFood-
Processed

AlphaNumeric(50) The code of the processed
food (may contain a wildcard
e.g. ‘FP*’. The wildcard
matches all characters
preceded by the startcode
‘FP’).

idFood-
Processed,
FoodProcessed-
Id,
FoodProcessed

Yes

idFood-
Unprocessed

AlphaNumeric(50) The code of the unprocessed
food (may contain a wildcard
e.g. ‘FP*’).

idFood-
Unprocessed,
Food-
UnprocessedId,
idFood, FoodId,
Food-
Unprocessed

Yes

Nominal Numeric The nominal value (best
estimate of 50th percentile)
of processing factor (defines
median processing factor).

Nominal,
ProcNom

No

Upper Numeric The upper value (estimate of
95th percentile or “worst
case” estimate) of processing
factor due to variability.

Upper, ProcUpp No

Nominal-
Uncertainty-
Upper

Numeric The upper 95th percentile of
nominal value (Nominal) due
to uncertainty. A standard
deviation for uncertainty of
the nominal value (Nominal)
is derived using the nominal
value (Nominal) and upper
95th percentile
(NominalUncertaintyUpper).

Nominal-
Uncertainty-
Upper,
ProcNomUnc-
Upp

No

Upper-
Uncertainty-
Upper

Numeric The upper 95th percentile of
upper value (Upper) due to
uncertainty. From the
nominal value (Nominal),
upper value (Upper) and the
specified uncertainties of
these values
(NominalUncertaintyUpper
and UpperUncertaintyUpper,
respectively) the degrees of
freedom of a chi-square
distribution describing the
uncertainty of the standard
deviation for variability is
derived.

Upper-
Uncertainty-
Upper,
ProcUppUnc-
Upp

No
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Table aliases: ProcessingFactors, ProcessingFactor, Processing.

Food facet processing factors

This table can be used to define processing factors for (FoodEx2) food/food-facet combinations.

Table 2.71: Table definition for FoodFacetProcessingFactors.
Name Type Description Aliases Required
idProcessing-
Type

AlphaNumeric(50) The code of the processing
type.

idProcessing-
Type,
ProcessingType-
Id,
ProcessingType,
ProcType, facet,
idFacet,
codeFacet

Yes

idFood AlphaNumeric(50) The food to which this facet
should be linked.

idFood, FoodId,
Food

Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

No

Nominal Numeric The nominal value (best
estimate of 50th percentile)
of processing factor (defines
median processing factor).

Nominal,
ProcNom

No

Upper Numeric The upper value (estimate of
95th percentile or “worst
case” estimate) of processing
factor due to variability.

Upper, ProcUpp No

Nominal-
Uncertainty-
Upper

Numeric The upper 95th percentile of
nominal value (Nominal) due
to uncertainty. A standard
deviation for uncertainty of
the nominal value (Nominal)
is derived using the nominal
value (Nominal) and upper
95th percentile
(NominalUncertaintyUpper).

Nominal-
Uncertainty-
Upper,
ProcNomUnc-
Upp

No

Upper-
Uncertainty-
Upper

Numeric The upper 95th percentile of
upper value (Upper) due to
uncertainty. From the
nominal value (Nominal),
upper value (Upper) and the
specified uncertainties of
these values
(NominalUncertaintyUpper
and UpperUncertaintyUpper,
respectively) the degrees of
freedom of a chi-square
distribution describing the
uncertainty of the standard
deviation for variability is
derived.

Upper-
Uncertainty-
Upper,
ProcUppUnc-
Upp

No

Table aliases: FoodFacetProcessingFactors, FoodFacetProcessingFactor, FacetProcessingFactors,
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FacetProcessingFactor, FacetProcessing.

Processing factors settings

Uncertainty settings

Table 2.72: Uncertainty settings for module Processing factors.
Name Description
Resample processing factors Specifies whether processing factors are resampled from a

parametric uncertainty distribution.

Processing factors uncertainty

Processing effects are modelled either by a fixed processing factor, or by a lognormal or logistic-normal distribution
(depending on the distribution type of the processing type). In case of a fixed factor, the uncertainty distribution is
lognormal or logistic-normal with the same mean 𝜇 as the fixed value, and with a standard deviation 𝜎𝑢𝑛𝑐 which is
calculated from the specified central value 𝜇 (or nominal) and an estimate of the p95 of the uncertainty distribution
(set NominalUncertaintyUpper in the table for ProcessingFactors).
The calculation is:

𝜎𝑢𝑛𝑐 = f(NominalUncertaintyUpper) − 𝑓(𝜇)
1.645

with 𝑓() = 𝑙𝑜𝑔𝑖𝑡 for the logistic-normal distribution (distribution type 1) and 𝑓() = 𝑙𝑛 for the lognormal distribution
(distribution type 2). Values lower than 0.01 or higher than 0.99 (distribution type 1 only) are replaced by default
values (0.01 and 0.99); this is useful computationally to avoid problems. In each iteration of the uncertainty analysis
a new value is drawn from this distribution to be used as a fixed factor in the Monte Carlo calculation. In case of dis-
tribution based processing factors (describing the variability of processing factors) two uncertainties can be specified.
For 𝜎𝑢𝑛𝑐, specification and calculation is as before (set NominalUncertaintyUpper in the table for ProcessingFactors).
The uncertainty about the variability standard deviation

𝜎𝑣𝑎𝑟 = 𝑓(𝑈𝑝𝑝𝑒𝑟) − 𝑓(𝜇)
1.645

can be specified by the UpperUncertaintyUpper value. This value is specified as the p95 upper limit on Upper. The
specified value is used to derive in a iterative search the number of degrees of freedom df (van der Voet et al. 2009)
[46]. In the uncertainty analysis, a modified chi-square distribution with df degrees of freedom is used to generate
new values of 𝜎𝑣𝑎𝑟. A very high value of dfmeans litte uncertainty and 𝜎𝑣𝑎𝑟 will be almost equal in all iterations of the
uncertainty analysis. A df close to 0 means a large uncertainty and very different values of 𝜎𝑣𝑎𝑟 will be obtained in the
iterations of the uncertainty analysis. The p95 upper limit on Upper is set through parameterUpperUncertaintyUpper.

Processing factors as data

• Processing factors data formats

2.3.9 Substance authorisations

Substance authorisations specify which food/substance combinations are authorised for (agricultural) use. If substance
authorisations are used, then only the food/substance combinations that are specified in the data are assumed to be
authorised and all other combinations are assumed to be not authorised. This informationmay, for instance, be used to
determine whether concentration measurements below the LOR could be assumed true zeros. I.e., if a food/substance
combinations is assumed to be unauthorised, then the LOR may be assumed to be a zero.
This module has as primary entities: Foods Substances
Output of this module is used by: Concentrations Occurrence patterns
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Substance authorisations data formats

Substance authorisations

Authorised uses data provides information about whether substance use is allowed for specified foods. For cumulative
exposure assessments, this information can be used for imputation of non-detects/missing values.

Authorised uses

The authorised uses table

Table 2.73: Table definition for AuthorisedUses.
Name Type Description Aliases Required
idFood AlphaNumeric(50) The food code. idFood, FoodId,

Food
Yes

idSubstance AlphaNumeric(50) The substance code. idSubstance,
Substance,
SubstanceId

Yes

Reference AlphaNumeric(200) External reference(s) to
sources containing more
information about the effect
(key event) relationships.

Reference,
References

No

Table aliases: AuthorisedUses, AuthorisedUse.

Substance authorisations as data

Substance authorisations are specified as data in the form of a list of authorised food/substance combinations, with
combinations not on the list assicated with no authorised use.

• Substance authorisations data formats

2.3.10 Substance conversions

Substance conversions specify how measured substances are converted to active substances, which are the substances
assumed to cause health effects. In the pesticide legislation such measured substances and the substance conversion
rules are known as residue definitions.
This module has as primary entities: Substances
Output of this module is used by: Concentrations

Substance conversions data formats

Two types of substance conversions are implemented, with two subtypes for the first type:
1a) The measured substance is one or more of a set of possible substances (e.g. isomers or metabo-
lites), and the toxicity of all substances in this set is assumed to be the same and is expressed in one
active substance. Example: The measured substance Parathion-methyl(RD) is either Parathion-methyl
or paraoxon-methyl, but both are expressed as the active substance Parathion-methyl.
1b) The measured substance is one or more of a set of possible substances (e.g. isomers or metabolites),
and the toxicity of all substances in this set is assumed to relate with equal probability to one of a subset
of active substances. Example: The measured substance Dithiocarbamates includes the active substances
maneb, mancozeb, metiram, propineb, thiram and ziram, one of which will be assumed to be the active
substance present with equal probability.
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2) If n active substances all metabolise to the same active substance (the metabolite), it is assumed that all
n+1 substances have equal probability of being the source of the measured concentration. The measured
substance then is either one active substance (the metabolite) or a mixture of two active substances,
one being the metabolite and the other one of the possible parent substances. Example: The measured
substance Carbofuran(RD) is either the active substance Carbufuran or a mixture of Carbofuran and one
of the possible active parent substances Benfuracarb or Carbosulfan.

Substance conversions

Substance conversions are described by a single substance conversions table.

Substance conversions

The records of the substance translations definitions table specify which active substances (idActiveSubstance) link
to a measured substance (idMeasuredSubstance). Each record contains a conversion factor that specifies how a con-
centration of the measured substance translates to a concentration of the active substance, a flag that states whether
the residue definition should be assumed to translate exclusively to one of its active substances, and a proportion. The
proportion specifies the proportion of the samples that should translate to this specific active substance in case the
translation is exclusive, otherwise it specifies the proportion of the concentration that is assumed to be attributed to
the active substance.
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Table 2.74: Table definition for ResidueDefinitions.
Name Type Description Aliases Required
idMeasured-
Substance

AlphaNumeric(50) Substance code of the
measured substance.

idResidue-
Definition,
Residue-
Definition,
Measured-
Substance

Yes

idActive-
Substance

AlphaNumeric(50) Substance code of the active
substance.

idActive-
Substance,
idSubstance,
Active-
Substance,
Substance

Yes

Conversion-
Factor

Numeric Specifies the (molecular
weight) conversion factor to
translate the concentration of
the residue definition to a
concentration of the active
substance

Conversion-
Factor

Yes

IsExclusive Boolean Specifies whether a
measurement of the residue
substance should be translated
exclusively to this active
substance, or if the residue
definition represents/breaks
down to a mixture of active
substances.

IsExclusive Yes

Proportion Numeric In case the definition is
exclusive: the proportion of
measurements of the residue
definition that can be assumed
to translate exclusively to a
concentration of the active
substance. In case the residue
definition is not exclusive, the
proportion of the
concentration that is assumed
to be attributed to the active
substance.

Proportion No

Table aliases: ResidueDefinitions, ResidueDefinition.

Substance conversions as data

• Substance conversions data formats

Inputs used: Active substances

2.3.11 Total diet study sample compositions

Total diet study sample compositions specify the composition of mixed food samples, such as used in a total diet
study (TDS), in terms of their constituting foods.
This module has as primary entities: Foods
Output of this module is used by: Food conversions
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Total diet study sample compositions data formats

Total diet study data

Total diet studies (TDS) complement traditional monitoring of substance concentrations on raw commodities by
measuring substance occurrence in main foods prepared as consumed and pooled into representative food groups. To
include occurrence data from TDS for exposure assessment, the composition of the TDS samples is needed in order
to link the composite samples to the consumed foods (either directly or indirectly). TDS composition data describes
the composition of TDS samples by specifying the foods (and the amounts) of TDS samples.

TDS food sample compositions

The TDS food sample compositions table contains the descriptions of the TDS samples and specifications of the
foods (with amounts) included in the TDS samples.

Table 2.75: Table definition for TDSFoodSampleCompositions.
Name Type Description Aliases Required
idTDSFood AlphaNumeric(50) The code of the TDS food. idTDSFood Yes
idFood AlphaNumeric(50) Sub-food of the TDS food. idFood Yes
PooledAmount Numeric Total weight (in g) or volume

(in ml) of the food.
PooledAmount,
Weight

Yes

Description AlphaNumeric(200) Additional description of the
TDS sample (e.g. number of
subsamples).

Description No

Regionality AlphaNumeric Regionality information. Regionality No
Seasonality AlphaNumeric Seasonality information. Seasonality No

Table aliases: TDSFoodSampleCompositions, TDSFoodSampleComposition, CompositionTDSFoodSamples,
CompositionTDSFoodSample.

Total diet study sample compositions as data

• Total diet study sample compositions data formats

2.3.12 Unit variability factors

Unit variability factors specify the variation in concentrations between single units of the same food, which have been
put together in a mixture sample on which the concentration measurements have been made. Unit variability factors
are used to account for the fact that concentration data often relate to composite samples, whereas an acute risk may
result from single food units.
This module has as primary entities: Foods Substances
Output of this module is used by: Dietary exposures

Unit variability factors data formats

Unit variability factors

Unit variability factors specify the unit-to-unit variation of substance concentrations on foods. Unit variability factors
are described by a single unit variability factors table.
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Unit variability factors

Unit variability factors are defined for a food, and may possibly also be specified for a specific substance and/or
processing type. The unit variability factors are linked to the foods by means of the food code (idFood). Unit
variability factors can be specified as unit variability factors (P97.5/mean) or as coefficients of variation of a statistical
distribution.

Table 2.76: Table definition for UnitVariabilityFactors.
Name Type Description Aliases Required
idFood AlphaNumeric(50) The food code. idFood, FoodId,

Food
Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

No

idProcessing-
Type

AlphaNumeric(50) The processing type code. idProcessing-
Type,
ProcessingType-
Id,
ProcessingType,
ProcType

No

Factor Numeric The variability factor. Factor, VarFac,
VariabilityFactor

No

UnitsIn-
Composite-
Sample

Numeric The number of units in the
composite sample.

UnitsIn-
Composite-
Sample,
NoUnitComp

Yes

Coefficient Numeric The coefficient of variation. Coefficient,
Variability-
Coefficient,
CoefVar,
VarCoef

No

Table aliases: UnitVariabilityFactors, UnitVariabilityFactor, VariabilityFactor, VariabilityFactors,
VariabilityProcCompProd, UnitVariability.

Unit variability factors as data

• Unit variability factors data formats

2.4 Exposure modules

Exposures are, in the simplest applications, dietary exposures, which combine consumption and occurrence data,
either for single or for multiple substances causing the same adverse effect. Links between the foods-as-eaten and the
foods-as-measured are made using food conversions, and the consumptions are expressed as consumptions per food as
measured. For large assessment groups, the use of dietary exposures screening may be used to reduce the complexity
of the calculations and only focus calculations on the risk drivers.
In aggregate exposure assessments, exposures combine dietary exposures with non-dietary exposures, which have to
be entered as pre-calculated data.
Human monitoring data can be compared to exposures using human monitoring analysis.
In cumulative assessments, important mixtures of substances can be identified using exposure mixtures.
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2.4.1 Consumptions per food as measured

Consumptions by food as measured are consumptions of individuals expressed on the level of the foods for which
concentration data are available (i.e., the foods-as-measured). These are calculated from consumptions of foods-as-
eaten and food conversions that link the foods-as-eaten amounts to foods-as-measured amounts.
This module has as primary entities: Populations Foods Substances
Output of this module is used by: Dietary exposures with screening Dietary exposures

Consumptions by food-as-measured calculation

Consumptions by food as measured are calculated from consumptions of foods-as-measured and food conversions that
link the foods-as-eaten amounts to foods-as-measured amounts. Given that the food conversion is already available,
the procedure for computing the consumptions by food-as-measured is straightforward. For each consumption of
each individual, a food-as-measured consumption record is created for each food-as-measured that is linked to the
consumed foods through the food conversion, with the amount being the total consumption amount multiplied by the
proportion indicated by the food conversion. Also, if the food conversion includes one or more processing steps, then
these are recorded in the consumption per food as measured record.

Consumptions by food as measured

Calculation settings

Table 2.77: Calculation settings for module Consumptions by food as mea-
sured.

Name Description
Restrict population to
consumers or consumer days
only (food-as-measured)

Specifies whether the population should be restricted to the
individuals (chronic) or individual days (acute) with consumptions
containing any of the foods-as-measured.

Risk type The type of exposure considered in the assessment; acute (short
term) or chronic (long-term).

Restrict population to
consumers or consumer days
with consumptions of specified
foods-as-measured only

Specifies whether the population should be restricted to the
individuals (chronic) or individual days (acute) with consumptions
containing any of the specified food-as-measured subset.

Selected foods-as-measured Set of consumed foods as measured that are of particular interest
for restricting the consumers / consumption days.

Calculation of consumptions by food as measured

Consumptions by food as measured are calculated from consumptions of foods-as-eaten and food conversions that
link the foods-as-eaten amounts to foods-as-measured amounts.

• Consumptions by food as measured calculation

Inputs used: Consumptions Food conversions
Settings used

• Calculation Settings

2.4.2 Dietary exposures

Dietary exposures are the amounts of substances, expressed per kg bodyweight or per individual, to which individuals
in a population are exposed from their diet per day. Depending on the exposure type, dietary exposures can be short-
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term/acute exposures and then contain exposures for individual-days, or they can be long-term/chronic exposures, in
which case they represent the average exposure per day over an unspecified longer time period.
This module has as primary entities: Populations Foods Substances Effects
Output of this module is used by: Exposures

Dietary exposures calculation

In probabilistic exposure assessment we consider a population of individuals. Exposure assessment with MCRA
can address acute exposure or chronic exposure. Acute exposure is relevant when the short-term effect on individ-
uals is relevant, chronic exposure when the long-term effects on the individuals matter. In MCRA short-term is
operationalised as one day, so effectively acure exposure assessment is concerned with a population of person-days,
whereas chronic exposure assessment is concerned with a population of persons.
The basic operation in exposure assessment is integrating consumptions and concentrations per food. With multiple
foods, consumptions are typically correlated, therefore MCRA works with the multivariate distribution of a con-
sumption vector, as represented by the consumption data of individuals in a consumption survey. In contrast, the
distributions of concentration for each food are typically considered to be independent between foods. E.g., eating
an apple with an accidentally high residue concentration does not predict that another food eaten on the same day
will also have a high residue concentration. As a consequence of this assumption, concentrations of substances as
modelled for each food independently.
For large assessment groups, the use of dietary exposures screening may be used to reduce the complexity of dietary
exposures calculations and only focus calculations on the risk drivers. In this case, only detailed information is
recorded for the risk drivers. With or without screening MCRA produces the same estimated cumulative exposure
distribution summarized by percentiles and exceedance percentages, the same contributions of all substances and all
foods-as-measured. After screening, contributions related to food-as-eaten are available for the risk drivers only.

Acute exposure assessment

In an acute exposure assessment, the short term exposure to a substance or group of substances is estimated. The
interest is in the distribution of individual day exposures and derived statistics like the fraction of days that exceed an
intake limit or point of departure (PoD). The PoD is calculated as the acute reference dose (ARfD) * safety factor
(SF). The basic model for the exposure to a substance in an acute exposure assessment is:

𝑦𝑖𝑗 = ∑𝑝
𝑘=1 𝑥𝑖𝑗𝑘𝑐𝑖𝑗𝑘

𝑏𝑤𝑖

where 𝑦𝑖𝑗 is the intake by individual 𝑖 on day 𝑗 (in microgram substance per kg body weight), 𝑥𝑖𝑗𝑘 is the consumption
by individual 𝑖 on day 𝑗 of food 𝑘 (in g), 𝑐𝑖𝑗𝑘 is the (simulated) concentration of that substance in food 𝑘 eaten by
individual 𝑖 on day 𝑗 (in mg/kg), and 𝑏𝑤𝑖 is the body weight of individual 𝑖 (in kg). Finally, 𝑝 is the number of foods
accounted for in the model. Within parenthesis, the default unit definitions are assumed, but decimal multiples or
submultiples of units are easily specified using the relevant tables.
In the exposure assessment, individual days enter the Monte Carlo sample using the inverse of the sampling weights
wi when the number of MC iterations is > 0 (see table for Individuals, field SamplingWeight).

Modelling unit to unit variation

In the basic model for an acute exposure assessment, it is assumed that the concentration of the substance displays
the variation of residues between units in the marketplace. In general, both monitoring data and controlled field trial
data are obtained using composite samples and, as a result, some of the unit to unit variation is averaged out. The
model for unit variability aims to adjust the composite sample mean such that sampled concentrations represent the
originally unit to unit variation of the units in the compositie sample.
MCRA offers three distributions to sample from:

1. the beta distribution,
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Contribution to total exposure distribution for foods as measured

PEACHES (NECTARINES)
APPLE
TABLEGRAPES
CHERRIES
TOMATOES
GRAPEFRUIT
WINEGRAPES
APRICOTS
RAPE SEED
ORANGES
KALE
RICE
PEPPERS
POTATOES
GUAVA
others (n=76)

Figure 2.12: Example MCRA dietary exposure contributions foods as measured.
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Contribution to total exposure distribution for foods as eaten

Fruit nectar
Juice, multi-fruit
Apple (Malus domesticus)
Pastries and cakes
Juice, Apple
Juice, Grapefruit
Juice, Orange
Fruit juice
Kale (Brassica oleracea convar. Acephalea)
Wine, red
Jam
Tomatoes (Lycopersicum esculentum)
Peppers, paprika (Capsicum annuum, var. gro...
Rice, white
Wine, white
others (n=253)

Figure 2.13: Example MCRA dietary exposure contributions foods as eaten
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Fenbuconazole
Tetraconazole
Tebuconazole
Difenoconazole
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Metconazole
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Epoxiconazole
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Ipconazole

Figure 2.14: Example MCRA dietary exposure contributions substances
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Contribution to total exposure distribution for foods as measured x substances (MSCC)

Fenbuconazole PEACHES (NECTARINES)
Tetraconazole TABLEGRAPES
Tetraconazole APPLE
Fenbuconazole CHERRIES
Fenbuconazole GRAPEFRUIT
Fenbuconazole APRICOTS
Tetraconazole WINEGRAPES
Metconazole RAPE SEED
Tetraconazole TOMATOES
Difenoconazole KALE
Fenbuconazole ORANGES
Hexaconazole RICE
Tebuconazole PEACHES (NECTARINES)
Hexaconazole PEPPERS
Tebuconazole APPLE
others (n=230)

Figure 2.15: Example MCRA dietary exposure contributions foods as measured x substances
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2. the lognormal distribution,
3. and the bernoulli distribution.

The beta distribution simulates values for a unit in the composite sample and requires knowledge of the number of
units in a composite sample and of the variability between units. The lognormal distribution simulates values for
a new unit in the batch and requires only knowledge of the variability between units. The bernoulli distribution is
considered as a limiting case of the beta distribution when knowledge of the variability between units is lacking and
only the number of units in the composite sample is known. For the beta and lognormal distribution, estimates of
unit variability are realistic (no censoring at the value of the monitoring residue) or conservative (unit values are
left-censored at the value of the monitoring residue). For the lognormal distribution, sampled concentrations have
no upper limit whereas for the beta distribution, sampled concentration values for a unit are never higher than the
monitoring residue * the number of units in the composite sample.
Variability between units is specified using a variability factor v (defined as 97.5th percentile divided by mean) or a
coefficient of variation cv (standard deviation divided by mean). Following FAO/WHO recommendations, for small
crops (unit weight < 25 g), a default variability factor 𝑣 = 1 is used, for large crops (unit weight ≥ 25 g), a variability
factor 𝑣 = 5 is used. For foods which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree,
bulking/blending a variability factor 𝑣 = 1 is proposed.

Estimation of intake values using the concept of unit variability

A composite sample for food 𝑘 is composed of 𝑛𝑢𝑘 units with nominal unit weight 𝑤𝑢𝑘. The weight of a composite
sample is 𝑤𝑚𝑘 = 𝑛𝑢𝑘 ⋅ 𝑤𝑢𝑘 with mean residue value 𝑐𝑚𝑘.

• For each iteration 𝑖 in the MC-simulation, obtain for each food k a simulated intake 𝑥𝑖𝑘, and a simulated
composite sample concentration 𝑐𝑚𝑖𝑘.

• Calculate the number of unit intakes 𝑛𝑢𝑥𝑖𝑘 in 𝑥𝑖𝑘 (round upwards) and set weights 𝑤𝑖𝑘𝑙 equal to unit weight
𝑤𝑢𝑘, except for the last partial intake, which has weight 𝑤𝑖𝑘𝑙 = 𝑥𝑖𝑘 − (𝑛𝑢𝑥𝑖𝑘 − 1)𝑤𝑢𝑘 .

• For the beta or bernoulli distribution: draw 𝑛𝑢𝑥𝑖𝑘 simulated values 𝑏𝑐𝑖𝑘𝑙 from a beta or bernoulli distribution.
Calculate concentration values as 𝑐𝑖𝑘𝑙 = 𝑏𝑐𝑖𝑘𝑙 ⋅ 𝑐𝑚𝑖𝑘,𝑚𝑎𝑥 = 𝑏𝑐𝑖𝑘𝑙 ⋅ 𝑐𝑚𝑖𝑘 ⋅ 𝑛𝑢𝑘 = svf𝑖𝑘𝑙 ⋅ 𝑐𝑚𝑖𝑘, where
𝑛𝑢𝑘 is the number of units in a composite sample of food 𝑘, and 𝑠𝑣𝑓𝑖𝑘𝑙 is the stochastic variability factor for
this simulated unit, i.e. the ratio between simulated concentration 𝑐𝑖𝑘𝑙 and the simulated composite sample
concentration 𝑐𝑚𝑖𝑘. Sum to obtain the simulated concentration in the consumed portion:

𝑐𝑖𝑘 =
𝑛𝑢𝑥𝑖𝑘

∑
𝑙=1

𝑤𝑖𝑘𝑙𝑐𝑖𝑘𝑙/𝑥𝑖𝑘

• For the lognormal distribution: draw 𝑛𝑢𝑥𝑖𝑘 simulated logconcentration values lc𝑖𝑘𝑙 from a normal distribution
with (optional) a biased mean 𝜇 = 𝑙𝑛(𝑐𝑚𝑖𝑘) or (default) unbiased mean 𝜇 = 𝑙𝑛(𝑐𝑚𝑖𝑘) − 1/2𝜎2 and standard
deviation 𝜎. Calculate concentration values as

𝑐𝑖𝑘𝑙 = exp(𝑙𝑐𝑖𝑘𝑙) = svf𝑖𝑘𝑙 ∗ 𝑐𝑚𝑖𝑘

where svf𝑖𝑘𝑙 is the stochastic variability factor for this simulated unit, i.e. the ratio between simulated concentration
𝑐𝑖𝑘𝑙 and the simulated composite sample concentration 𝑐𝑚𝑖𝑘. Back transform and sum to obtain the simulated
concentration in the consumed portion:

𝑐𝑖𝑘 =
𝑛𝑢𝑥𝑖𝑘

∑
𝑙=1

𝑤𝑖𝑘𝑙𝑐𝑖𝑘𝑙/𝑥𝑖𝑘

For cumulative exposure assessments, a sensitivity analysis may be performed by specifying a full correlation between
concentrations from different substances on the same unit. As a result, high (or low) concentrations from different
substances occur together on the same unit. In MCRA, for each unit the random sequence is repeatedly used to
generate concentration values for all substances.
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Chronic exposure assessment

In a chronic exposure assessment, usual exposure is defined as the long-run average of daily exposure to a substance
or group of substances by an individual. Usually, for an individual, dietary recall data are available on 2 (or more)
consecutive days. We assume an equal number of days for each individual, unless specified differently in table for
Individuals.
For a chronic exposure assessment the available data are used to calculate exposures per person-day (daily exposure):

𝑦𝑖𝑗 = ∑𝑝
𝑘=1 𝑥𝑖𝑗𝑘𝑐𝑖𝑗𝑘

𝑏𝑤𝑖

where 𝑦𝑖𝑗, 𝑥𝑖𝑗𝑘 and 𝑏𝑤𝑖 are defined as before but now concentrations of the substance found in food 𝑘 enter the model
as the estimated mean substance concentration value 𝑐𝑘. Using the person-day exposures MCRA, provides a number
of exposure models to calculate the distribution of usual exposure at the person level.

Chronic exposure models

Using the person-day exposures MCRA uses one of the following models to calculate the distribution of usual expo-
sure at the person level:

1. The observed individual means observed individual means (OIM) model;
2. The logisticnormal-normal (LNN) model, in a full version that includes the estimation of correlation between

exposure frequency and amount, and in a simpler version without this estimation;
3. The betabinomial-normal (BBN) model;
4. The discrete/semi-parametric model known as the Iowa State University Foods (ISUF) model. For this model,

an equal number of days per individual is assumed.
In modelling usual exposure, two situations can be distinguished. Foods are consumed on a daily basis or foods are
episodically consumed. For the logisticnormal-normal model and the betabinomial-normal model, the latter requires
fitting of a two-part model,

1. a model for the frequency of consumption, and
2. a model for the exposure amount on consumption days.

In the final step, both models are integrated in order to obtain the usual exposure distribution. For daily consumed
foods, fitting of the frequency of consumption is skipped and modelling resorts to fitting the model to daily exposure
amounts only. Note that the distinction between BNN and LNN disappears and modelling will give equivalent results.

Observed individual means (OIM)

The usual exposure distribution for a population is estimated with the empirical distribution of individual means.
Each mean is the average of all single-day exposures for an individual. The mean value for an individual still contains
a considerable amount of within-individual variation. As a consequence, the distribution of within-individual means
has larger variance than the true usual exposure distribution and estimates using the OIM-method are biased, leading
to a too high estimate of the fraction of the population with a usual exposure above some standard. Despite its known
tendency to over-estimate high-tail exposures, the OIM method is the method to be used in EFSA (2012) [3] basic
assessments.

Model based and model assisted

Following Kipnis et al. [31], some of the models available in MCRA are extended to predict individual usual expo-
sures. This model assisted approach has been added to BBN and LNN when used without correlation) and may be
a useful extension in evaluating the relationship between health outcomes and individual usual exposures of foods.
In contrast, the estimation of the usual exposure distribution in the general population is called the model based
approach. Summarizing, we get Table 2.78:
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Table 2.78: Model based and assisted approach available for chronic ex-
posure models

Model based approach Model assisted approach
observed individual means (OIM)

betabinomial-normal (BBN) betabinomial-normal (BBN)
logisticnormal-normal (LNN) without correlation logisticnormal-normal (LNN) without correlation
logisticnormal-normal (LNN) with correlation
Iowa State University Foods (ISUF)

The model assisted approach builds on the proposal of Kipnis et al. [31], but is modified to ensure that the population
mean and variance are better represented. The method is based on shrinkage of the observed individual means
(modified BLUP estimates) and shrinkage of the observed exposure frequencies. The model-assisted usual exposure
distribution applies to the population for which the consumption data are representative, and automatically integrates
over any covariates present in the model. Model-assisted exposures are not yet available for LNN, and when a
covariable is modelled by a spline function of degree higher than 1. In case of a model with covariates the usual
exposure is presented in graphs and tables as a function of the covariates (conditional usual exposure distributions).

Betabinomial-Normal model (BBN)

The Betabinomial-Normal (BBN)model for chronic risk assessment is described in [16], including its near-identity to
the STEM-II model presented in [40]. The BBMmodel combines a betabinomial model for the exposure frequnecies
with a normal model for transformed positive exposures.

Logisticnormal-Normal model (LNN with and without correlation)

In the logisticnormal-normal (LNN) model, exposure frequencies are modelled by a logistic normal distribution. In
notation, for probability 𝑝:

logit(𝑝) = log(𝑝/1 − 𝑝) = 𝜇 − 𝑖 + 𝑐𝑖

where 𝜇𝑖 represents the person specific fixed effect model and 𝑐𝑖 represent person specific random effects with
estimated variance component 𝜎2

𝑏𝑒𝑡𝑤𝑒𝑒𝑛. Similarly as in the BBN model, the positive exposure amounts are mod-
elled, after transformation (logarithmic or Box-Cox), with a normal distribution. This model is referred to as the
LogisticNormal-Normal (LNN) model. The full LNN model model includes the estimation of a correlation between
exposure frequency and exposure amount. This is similar to the NCI model described in Tooze et al. [43]. A simple
and computationally less demanding version of the LNNmethod does not estimate the correlation between frequency
and amount. The models are fitted by maximum likelihood, employing Gauss-Hermite integration.
For chronic models amounts are usually transformed before the statistical model is fit. The power transformation,
given by 𝑦𝑝, has been replaced by the equivalent Box-Cox transformation. The Box-Cox transformation is a linear
function of the power transformation, given by (𝑦𝑝 − 1)/𝑝, and has a better numerical stability. Gauss-Hermite
integration is used for back-transformation (see also Box Cox power transformation).

Discrete/semi-parametric model (ISUF)

Nusser et al. [35] described how to assess chronic risks for data sets with positive exposures (a small fraction of
zero exposures was allowed, but then replaced by a small positive value). The modeling allowed for heterogeneity of
variance, e.g. the concept that some people are more variable than others with respect to their consumption habits.
However, a disadvantage of the method was the restricted use to contaminated foods which were consumed on an
almost daily basis, e.g. dioxin in fish, meat or diary products. The estimation of usual exposure from data sets with
a substantial amount of zero exposures became feasible by modeling separately zero exposure on part or all of the
days via the estimation of exposure probabilities as detailed in Nusser et al. [36] and Dodd [17]. In MCRA, a
discrete/semi-parametric model is implemented allowing for zero exposure and heterogeneity of variance following
the basic ideas of Nusser et al. and Dodd ([35], [36], [17]). This implementation of the ISUF model for chronic risk
assessment is fully described in de Boer et al. [16].
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Chronic exposure as a function of covariates

The intake X frequency and transformed intake amounts may be modelled as a function of covariates. MCRA allows
one covariable and/or one cofactor.

Table 2.79: Intake frequencies and amounts, modelled as a function of
covariates.

Frequencies Amounts
cofactor logit(𝜋) = 𝛽0𝑙 transf(𝑦𝑖𝑗) = 𝛽0𝑙 + 𝑐𝑖 + 𝑢𝑖𝑗
covariable logit(𝜋) = 𝛽0 + 𝛽1𝑓(𝑥1; df) transf(𝑦𝑖𝑗) = 𝛽0 + 𝛽𝑙𝑓(𝑥1; df) + 𝑐𝑖 + 𝑢𝑖𝑗
both logit(𝜋) = 𝛽0𝑙 + 𝛽1𝑓(𝑥1; df) transf(𝑦𝑖𝑗) = 𝛽0𝑙 + 𝛽𝑙𝑓(𝑥1; df) + 𝑐𝑖 + 𝑢𝑖𝑗
interaction logit(𝜋) = 𝛽0𝑙 + 𝛽1𝑙𝑓(𝑥1; df) transf(𝑦𝑖𝑗) = 𝛽0𝑙 + 𝛽1𝑙𝑓(𝑥1; df) + 𝑐𝑖 + 𝑢𝑖𝑗

Here 𝑙 = 1 ⋯ 𝐿 and 𝐿 is the number of levels of the cofactor, 𝑦𝑖𝑗 , the intake amount, 𝑥1 is the covariable, 𝑓 is
a polynomial function with the degrees of freedom df, 𝑐𝑖 and 𝑢𝑖𝑗 are the individual effect and interaction effect,
respectively. These effects are assumed to be normally distributed 𝑁(0, 𝜎2

𝑏𝑒𝑡𝑤𝑒𝑒𝑛) resp. 𝑁(0, 𝜎2
𝑤𝑖𝑡ℎ𝑖𝑛). The degree

of the function is determined by backward or forward selection. In the output, the usual intake is displayed for a
specified number of values of the covariable and/or the levels of the cofactor.

Total Diet Study

In Total Diet Studies (TDS), substance occurrence data is obtained from measuring food products as consumed.
TDS offers a more direct measure of substance concentrations compared to traditional monitoring and surveillance
programs that are concerned with contamination of raw agricultural commodities. In a TDS, food selection is based
on national consumption data in such a way that 90 to 95% of the usual diet is represented by the samples. Selected
foods are collected, prepared as consumed and related foods are pooled prior to analysis. The compositions these
TDS food samples are described by the TDS food sample compositions data module.
In MCRA, TDS concentration data can also be used in dietary exposure assessments, using it as an alternative type
of concentration data where the foods-as-measured are not the raw primary commodities (RACs), but these are
TDS food compositions. To link the concentration data to the consumed foods, the TDS food sample composition
information is used in the food conversion algorithm in a manner analogous to the use of food recipes describing the
composition of a composite food. The main difference is that the translation proportion is always 100% (default).
Take, as an example, a TDS food FruitMix that is composed of apple, orange and pear, then a consumed food (food-
as-eaten) apple-pie is converted to apple, wheat and butter (in some specific proportions) and subsequently, apple is
converted to food-as-measured FruitMix (100%). Not necessarily all foods as consumed are represented in a TDS
food sample. In addition to the TDS food sample compositions, there may be additional foods that are not officially
part of a TDS food, but which can be extrapolated to a TDS food sample. Through the use of food extrapolations
(read across translations), these foods may be directly linked to a TDS food sample, e.g., by specifying that pineapple
is translated to FruitMix, pineapple or foods containing pineapple will also be matched to a FruitMix concentration.
Because TDS samples only contain one single, average measurement, TDS occurrence data can currently only be
used for only applicable for chronic exposures assessments. However, when variability information is available for
the raw primary foods in the TDS food samples (e.g., frommonitoring), this information may be used to approximate
the variance of TDS samples.
For more information about Total Diet Studies, visit the TDS-Exposure website http://www.tds-exposure.eu.

Deriving the variance of TDS samples from monitoring

Variability of TDS food sample concentrations can be derived using concentration distributions for the sub-foods of
the TDS food samples. For each sub-food, e.g. apple (sub-food of TDS food FruitMix), a coefficient of variation (CV)
is specified that is derived using the available monitoring samples. Note that monitoring samples may be composite
samples. For apple, composite food samples are measured and each sample contains, for instance, 12 apples with
unit weight 200 g. So monitoring concentrations, 𝑐𝑚𝑖, are based on composite samples with a total weight 𝑤𝑚𝑖 =
2400 g each.
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A TDS food sample is composed of 𝑤𝑖 g of food 𝑖 with 𝑖 = 1…k, wi represents the PooledAmount in TDS food
sample compositions table. Then, the concentration of a TDS food sample may be represented as:

𝑐𝑇 𝐷𝑆 =
𝑘

∑
𝑖=1

(𝑤𝑖 ⋅ 𝑐𝑖)/
𝑘

∑
𝑖=1

𝑤𝑖

with variance:

var(cTDS) =
𝑘

∑
𝑖=1

(𝑤𝑖 ⋅ var(ci))/
𝑘

∑
𝑖=1

𝑤𝑖

and var(ci) is the variance of concentrations 𝑐𝑖 of food 𝑖 with portion sample size 𝑤𝑖.
It is expected that increasing the number of units in a composite sample will have a reverse effect on the variation
between concentrations. Suppose TDS food FruitMix is composed of 2 x 200 = 400 g apple. The expected variation
between portion sizes of 400 g will be larger than between portion sizes of 2400 g:

var(ci) = var(cmi) ⋅ 𝑤𝑚𝑖/𝑤𝑖

The variance of the monitoring samples are corrected as follows, calculate:
1. var(cmi) = log(𝐶𝑉 2

𝑚𝑖 + 1)
2. var(ci) = var(cmi) ⋅ 𝑤𝑚𝑖/𝑤𝑖

3. 𝐶𝑉𝑖 = √exp(var(𝑐 + 𝑖) − 1)

Scenario analysis

The outcome of a MCRA risk assessment may be that some foods dominate the right upper tail of the exposure
distribution. A scenario analysis answers the question to what extent the risk of foods with a high exposure would
have been diminished by an intervention or by taking any precautions. To be able to do so, some information is
needed about the variability of the concentration distribution of the raw agricultural commodities that make up the
TDS food sample. These distributions may be characterised by a mean and a dispersion factor, the standard deviation
or, preferably, a percentile point e.g. p95. Monitoring samples may be used for this purpose. In addition, for
each subsample food an upper concentration limit is needed. This value is interpreted as the concentration that is
considered a high risk. The decision to intervene or not is based on the comparison between this upper limit and p95.

• For p95 ≤ limit, most concentration values are below the value that is considered as a potential risk, so there
is no urgency to take any precautions.

• When the opposite is true, i.c. p95 > limit, there may be an argument to intervene for this specific food.
In MCRA, limits and p95’s are supplied in the concentration distributions table. In the MCRA interface, a scenario
analysis is checked (optionally) and in the scroll down menu only foods are shown with p95 > limit. Selected foods
enter the risk assessment with a reduced concentration value:

𝑐𝑇 𝐷𝑆/reductionfactor,

where 𝑐𝑇 𝐷𝑆 is the concentration value of the TDS food with reductionfactor = p95 / limit.

Model-Then-Add

The traditional approach can be termed the Add-Then-Model approach, because adding over foods precedes the
statistical modelling of usual exposure. MCRA offers, as an advanced option, an alternative approach termed Model-
Then-Add (van der Voet et al. 2014). In this approach the statistical model is applied to subsets of the diet (single
foods or food groups), and then the resulting usual exposure distributions are added to obtain an overall usual exposure
distribution. The advantage of such an approach is that separate foods or food groups may show a better fit to the
normal distribution model as assumed in all common models for usual exposure (including MCRA’s betabinomial-
normal (BBN) model and logisticnormal-normal model models). That this principle can work in practice was shown
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in previous work (de Boer et al. 2009 [16], Slob et al. 2010 [41], Goedhart et al. 2012) [21], and a simulation model
was developed and implemented in MCRA 7.1 to show howmultimodal distributions can arise from adding unimodal
distributions of foods that are not always consumed (Slob et al. 2010 [41], de Boer and van der Voet 2011, [15]). For
specific cases involving separate modelling of dietary supplements and the rest of the diet, proposals have been made
(Verkaik-Kloosterman et al. 2011) [47]. However, a practical approach to apply the Model-Then-Add approach
to general cases of usual exposure estimation was still missing. Therefore a module in MCRA was developed to
implement such an approach based on a visual inspection of a preliminary estimate of the usual exposure distribution
using the Observed Individual Means (OIM) method.

The Model step

At this stage of development the division of foods into a number of food groups is performed in an interactive process,
where the MCRA user is presented with a visual display (see example in Figure 2.16) which shows:

1. The OIM distribution represented as a histogram, where each bar shows the frequency of exposures (summed
over foods) of individuals in a certain exposure interval; each bar is subdivided according to the contributions
of the individual foods contributing to those exposures (left panel Figure 2.16).

2. The contributions graph, where each of the bars in the OIM histogram is expanded to 100%. This graph allows
a better view of the lower bars in the OIM histogram.

The visual display identifies the nine foods that contribute most to the total exposure; the remaining foods are grouped
in a rest category to avoid identification problems because of too many colours (right panel Figure 2.16).

Figure 2.16: Left panel: OIM usual exposure distribution to smoke flavours via the different foods (excluding the zero
exposures) in young children; right panel: Contribution of foods to exposures within each bar of the OIM distribution
histogram.

The user has now the possibility to select one or more foods and to split these from the main exposure histogram. A
separate graph shows the OIM distribution for the split-off food or food group. The graphs for the main group (now
called the rest group) are adapted to show the OIM distribution and the contributions for the remaining foods only
(see Figure 2.17 upper two panels). This splitting-off can be repeated several times for other foods or food groups.
In this way the user can try to obtain foods or food groups that show unimodal OIM distributions. If the result is not
what is intended, a food or food group can be added again to the rest group. Per split-off food or food group the usual
exposure can be modelled using either BBN or LNN, with a logarithmic or power transformation. The rest group
will always be modelled as OIM. It is possible that the rest group is empty, when the total exposure via the different
split-off foods and /or food groups is modelled with BBN or LNN.
After a split-off selection has been made, the OIM distribution is summarised in terms of the defined grouping (Figure
2.18), and the usual exposure distribution per split-off food or food group is fitted according to the chosen modelling
settings.
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Figure 2.17: Result of a selection into two split-off groups and a rest group. The graph bottom left represents
the exposure via a food group containing ‘Sausage, frankfurter’ and ‘Sausage, smoked cooked’. The graph bottom
right represents the exposure via a food group containing ‘Sausage, luncheon meat’, Herbs, mixed, main brands, not
prepared’, ‘Soup, pea’, ‘Ham’, and ‘Bacon’. The top graph represents the exposure via the rest group.
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Figure 2.18: OIM usual exposure distribution showing the contributions from the three food groups as constructed
in Figure 2.17.

The Add step

Consumptions of foods may be correlated. In the traditional Add-Then-Model approach the Add step automatically
reflects any correlations that are apparent in the consumptions at the individual-day or individual level. In the Model-
Then-Add approach the estimated usual exposure distributions for different foods or food groups have to be combined
to assess the total usual exposure. Two approaches are available for this:

1. Model-based approach: adds independent samples from the usual exposure distribution per food or food group,
ignoring any correlations in consumption;

2. Model-assisted approach: adds the model-assisted, person-specific usual exposure estimates per food or food
group, taking correlations in consumptions into account.

Before the addition is made, in the model-based approach, model-based estimates of the usual exposure amounts
distribution per food or food group are back-transformed values from the normal distribution assumed for transformed
amounts per food or food group, and the model-based frequency distribution is sampled to decide if a simulated
individual has exposure via the food or food group or not. Model-assisted estimates of the usual exposure distribution
are back-transformed values from a shrunken version of the transformed OIM distribution, also done per food or food
group, where the shrinkage factor is based on the variance components estimated using the linear mixed model for
amounts at the transformed scale (van Klaveren et al. 2012). For individuals with no observed exposure (OIM=0)
no model-assisted estimate of usual exposure can be made and a model-based replacement is used.
The model-based approach was investigated in Slob et al. (2010) [41] and performed surprisingly well, even if
correlations in consumptions of foods were present. The model-assisted approach adds exposures at the individual
level, and therefore retains effects of correlations between foods in the usual exposure distribution.
MCRA calculates both the model-based and model-assisted usual intake distributions.

Substance concentrations generation

Both chronic and acute dietary exposure assessments rely on assigning substance concentrations to consumed foods-
as-measured. For chronic exposure assessments, this concentration should be the mean concentration of the food and
substance, as obtained from the concentration models. For acute, these concentrations are obtained through random
sampling, for which there are two distinct approaches: sample-based and substance-based.

Sample-based concentrations generation

In the sample-based approach, the analytical samples from the concentration data form the basis for generating
concentrations. For each identified food-as-measured of a consumption, substance concentrations are generated by
drawing a random sample from the set of all samples available for that food-as-measured. Assuming that for the
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Figure 2.19: Model-assisted estimated usual exposure distributions (excluding the zero exposures).

Figure 2.20: Model-based estimated usual exposure distributions (excluding the zero exposures).
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drawn sample, substance concentration values are known for all substances of interest (i.e., all missing values and
non-detects are imputed with either a zero concentration or a positive concentration at or below LOR), the substance
concentrations for all substances of the assessment group are set to the substance concentrations of the drawn sam-
ples. The rationale behind this approach is that it maintains correlations between substance concentrations on the
same food.
As mentioned, the sample based approach relies on all samples being analysed for all substances of interest. Often,
this is not the case and for a given sample, concentration may missing for one or more substances. Also, this approach
requires non-detect values to be imputed with either positive concentration or a zero concentration.
For imputation of missing values there are two approaches:

1. Imputation by zero: all missing values are assumed zero.
2. Imputation using substance-based concentration models: all missing values are imputed by drawing a

concentration value from the substance-based concentration models.
For imputation of non-detects, two approaches exist:

1. Replace by zero: Non-detect values are imputated by a zero concentration value. This is an optimistic ap-
proach.

2. Replace by factor times LOR: Each non-detect value is replaced by a factor (e.g., 1 or 1/2) times its LOR.

Substance-based concentrations generation

In the substance-based approach, substance concentrations for a given food are drawn independently per substance
from the food/substance concentration models.

Processing factor correction

Processing factors can be specified as fixed factors (nominal) or as statistical distributions for the variability across
samples.
Concentrations in the consumed food (food as eaten) may be different from concentrations in the food as measured in
monitoring programs (typically raw food) due to processing, such as peeling, washing, cooking etc. Concentrations
are therefore corrected according to

𝑐′
𝑗ℎ𝑘 = pf𝑗ℎ𝑘 ⋅ 𝑐𝑗ℎ𝑘 = (PF𝑘

𝑐𝑓𝑘
) ⋅ 𝑐𝑗ℎ𝑘

where 𝑐𝑗ℎ𝑘 is the concentration of substance 𝑘 in the food 𝑗 with processing type ℎ, and where pf𝑗ℎ𝑘 = PF𝑗ℎ𝑘
𝑐𝑓𝑗ℎ𝑘

is a
factor indicating the mass change for a specific combination 𝑘 of food as measured and processing. The processing
correction factor cf𝑗ℎ𝑘 is used to correct for the fact that the processing factors PF𝑗ℎ𝑘 as commonly available from the
input data describe both the effects of chemical alteration and weight change. E.g. for a dried food with a consumption
of 100 gram which is translated to 300 gram raw agricultural commodity, the correction factor is 3. Note that the
weight change is already included when calculating the consumption amounts of the foods-as-measured.

• The distribution is either the logistic-normal distribution for processing types with factors restricted between 0
and 1 (e.g. washing),

• or the lognormal distribution for processing types with non-negative factors (e.g. drying).
Variability distribution parameters are specified indirectly via the 50th and 95th percentile. Uncertainty for processing
factors can be specified using uncertainty distributions of the same form as for variability. Uncertainty distribution
parameters are specified indirectly via the 95th uncertainty percentiles on the 50th and 95th variability distribution
percentiles.
For distribution based processing factors specify 𝑓𝑘,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 and 𝑓𝑘,𝑢𝑝𝑝𝑒𝑟 (Nominal and Upper in table Processing-
Factors). Two situations are distinguished depending on the type of transformation.
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Nonnegative processing factors

Equate the logarithms of 𝑓𝑘,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 and 𝑓𝑘,𝑢𝑝𝑝𝑒𝑟 to the mean and the 95% one-sided upper confidence limit of a
normal distribution. This normal distribution is specified by a mean

𝑙𝑛(𝑓𝑘,𝑛𝑜𝑚𝑖𝑛𝑎𝑙)

and a standard deviation

𝑙𝑛(𝑓𝑘,𝑢𝑝𝑝𝑒𝑟)–𝑙𝑛(𝑓𝑘,𝑛𝑜𝑚𝑖𝑛𝑎𝑙)/1.645

Processing factors between 0 and 1

Equate the logits of 𝑓𝑘,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 and 𝑓𝑘,𝑢𝑝𝑝𝑒𝑟 to the mean and the 95% one-sided upper confidence limit of a normal
distribution. This normal distribution is specified by a mean

𝑙𝑜𝑔𝑖𝑡(𝑓𝑘,𝑛𝑜𝑚𝑖𝑛𝑎𝑙)

and a standard deviation

𝑙𝑜𝑔𝑖𝑡(𝑓𝑘,𝑢𝑝𝑝𝑒𝑟)–𝑙𝑜𝑔𝑖𝑡(𝑓𝑘,𝑛𝑜𝑚𝑖𝑛𝑎𝑙)/1.645.

Dietary exposures settings
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Calculation settings

Table 2.80: Calculation settings for module Dietary exposures.
Name Description
Dietary exposure calculation
tier

A tier is a pre-specified set of model configurations. By selecting a
model tier, MCRA automatically sets all model settings in this
module according to this tier. Note that currently tier setting may
need to be poerformed separately in sub-modules. Use the
Custom tier when you want to manually set each model setting.

Risk type The type of exposure considered in the assessment; acute (short
term) or chronic (long-term).

Compute exposures based on
total diet study data

Specifies whether exposure is based on sampling data from total
diet studies.

Express results in terms of
reference substance equivalents
(cumulative)

Specifies whether the assessment involves multiple substances and
results should be cumulated over all substances.

Dietary intake calculation
method

Dietary intake calculation method: choose between point
estimates and probabilistic.

Refined method choice Choose foods/substances for which a dietary intake method other
than the default should be specified.

Sample based Include co-occurrence of substances in samples in simulations. If
checked, substance residue concentrations are sampled using the
correlations between values on the same sample. If unchecked,
any correlation between substances is ignored, substance residue
concentrations are sampled ignoring the correlations between
values on the same sample.

Consumptions on the same day
come from the same sample

if checked, in procedure of EFSA Guidance 2012, section 4.1.1,
all consumptions of a raw commodity of an individual on the
same day are assumed to come from the same sample. If
unchecked, all consumptions of a raw commodity of an individual
on the same day are assumed to come from different samples.

Maximize co-occurrence of
high values in simulated
samples

Within each pattern of substance presence. If checked, substance
residue concentrations are sorted within co-occurrence patterns of
substances on the same samples. After sorting, high residue values
occur more frequently on the same sample. This choice is
conservative. If unchecked, substance residue concentrations are
sampled at random, ignoring any co-occurrence patterns of
substances on the same samples. This choice is less conservative.

Apply processing factors Specified in table ProcessingFactor. If checked, processing factors
are applied. Concentrations in the consumed food may be
different from concentrations in the food as measured in
monitoring programs (typically raw food) due to processing, such
as peeling, washing, cooking etc. If unchecked, no processing
information is used. This is in most (though not all) cases a
worst-case assumption

Processing factor model
Unit variability model Describes variation between single units when concentration data

are from composite samples.
Estimates nature Simulated unit concentrations can be higher or lower than

composite value (realistic) or only equal or higher (conservative).
Unit variability parameter Use Coefficient of variation or Variability factor, specified in

VariabilityFactor table.
Mean of LogNormal simulated
values (biasing)

Unbiased: correct unit simulations for difference between median
and mean.

Default variability factor for
unit weight <= 25g

Default variability factor 1 (unit weight <= 25 g, small crops). Still
requires specification of unit weight (FoodProperties table) and, in
case of beta model, also the Number of units in a composite
sample (UnitVariability table).

Default variability factor for
unit weight > 25g

Default variability factor 5 (unit weight > 25 g, medium/large
crops). Still requires specification of unit weight (FoodProperties
table) and, in case of beta model, also the Number of units in a
composite sample (UnitVariability table).

Model type The parametric model for between-and within-individual
variation, and possibly covariates.

Model-then-add Specifies whether to create separate exposure models for specific
groups of foods-as-measured (model-then-add).

Covariate modelling Specifies whether to model exposures as a function of covariates
at individual level.

Amount model covariate model Specifies whether, and how to model exposurs amounts as
function of covariates.

Frequency model covariates
model

Specifies whether, and how to model exposure frequency as
function of covariates.

Apply exposure screening Apply exposure screening results as a first step in full run, and
restrict output regarding foods-as-eaten to risk drivers.

Iterate survey Instead of (re-)sampling the individual days, loop over the entire
survey (= 1 iteration). The number of iterations for a survey is
calculated as round (number of Monte Carlo iterations /(number
of individuals * surveys days)).

Monte Carlo iterations The number of iterations for Monte Carlo simulations, e.g.
100.000 (maximum is 100.000).

Impute exposure distributions Impute exposure distributions for substances with missing
concentrations.
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Output settings

Table 2.81: Output settings for module Dietary exposures.
Name Description
Include drill-down on 9
individuals around specified
percentile.

Specifies whether drilldown on 9 individuals is to be included in
the output.

Summarize simulated data Specifies whether a summary of the simulated consumptions and
concentrations should be included in the output.

Store simulated individual day
exposures

Store the simulated individual day exposures. If unchecked, no
additional output will be generated. If checked, the output will
contain an additional section with the simulated individual day
exposures.

Show percentiles for Give specific percentiles of exposure distribution (%), e.g. 50 90
95 97.5 99 (space separated).

Percentage for drilldown Gives detailed output for nine individuals near this percentile of
the exposure distribution.

Percentage for upper tail Gives detailed output for this upper percentage of the exposure
distribution.

Show % of population below
level(s)

Exposure levels can be generated automatically or by explicit
specification (Manual).

Exposure levels Specify exposure levels for which to give the percentage of
exposure below these levels, e.g. 1 10 50 100 200 500. Specify
below whether these levels are absolute or relative to ARfD/ADI.

Exposure levels are Specify whether exposure levels are absolute or percentages of
ARfD/ADI.

Number of levels of covariable
to predict exposure

Specify the number of levels, e.g. 20. The range of the covariable
is divided by the number of levels: range = (max - min)/levels.
For these covariable levels exposures are predicted.

Predict exposure at extra
covariable levels

Specify specific prediction levels in addition to the automatically
generated prediction levels (space separated).

Lower percentage for
variability (%)

The default value of 25% may be overruled.

Upper percentage for
variability (%)

The default value of 75% may be overruled.

Report consumptions and
exposures per individual
instead of per kg body weight

Specifies whether body weights should be ignored and
consumptions and exposures should be expressed per individual.
Otherwise, the consumptions and exposures are per kg body
weight.

Uncertainty settings

Table 2.82: Uncertainty settings for module Dietary exposures.
Name Description
Resample imputation exposure
distributions

Specifies whether to resample the imputated exposure
distributions.

Dietary exposures tiers
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Overview

Table 2.83: Tier overview for module Dietary exposures.
Name EFSA

2012 Op-
timistic

EFSA
2012
Pes-
simistic -
Acute

EFSA
2012
Pes-
simistic -
Chronic

EC 2018
Tier 1

EC 2018
Tier 2

Risk type Acute Chronic
Compute exposures
based on total diet
study data

false false false false

Dietary intake
calculation method

Distribu-
tionEsti-
mates

Distribu-
tionEsti-
mates

Distribu-
tionEsti-
mates

Distribu-
tionEsti-
mates

Distribu-
tionEsti-
mates

Refined method choice false false false false false
Sample based true true true true true
Consumptions on the
same day come from
the same sample

false true true false false

Processing factor
model

Fixed FixedAl-
lowHigher

FixedAl-
lowHigher

Fixed Fixed

Unit variability model NoUnit-
Variability

BetaDis-
tribution

BetaDis-
tribution

BetaDis-
tribution

Estimates nature Realistic Realistic Realistic
Unit variability
parameter

Variabili-
tyFactor

Variabili-
tyFactor

Variabili-
tyFactor

Model type OIM OIM OIM OIM
Model-then-add false false false false
Covariate modelling false false false false false
Iterate survey false false false false false
Report consumptions
and exposures per
individual instead of
per kg body weight

false false false false false

EFSA 2012 Optimistic

Use the optimistic model settings according to the EFSA Guidance 2012. Concentration values are sampled using
a sample-based empirical distribution. Available processing factors are applied. No unit vatiability model should be
applied.
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Table 2.84: Tier definition for EFSA 2012 Optimistic.
Name Setting
Compute exposures based on total diet study data false
Dietary intake calculation method DistributionEstimates
Refined method choice false
Sample based true
Consumptions on the same day come from the same sample false
Processing factor model Fixed
Unit variability model NoUnitVariability
Model type OIM
Model-then-add false
Covariate modelling false
Covariate modelling false
Iterate survey false
Report consumptions and exposures per individual instead of per
kg body weight

false

Input tiers

Table 2.85: Input tiers for EFSA 2012 Optimistic.
Module Input tier
Concentration models EFSA 2012 Optimistic

EFSA 2012 Pessimistic - Acute

Acute probabilistic exposure assessment using the pessimistic model settings according to the EFSA Guidance 2012.
Only processing factors > 1 are applied. For unit variability, the Beta distribution is applied.

Table 2.86: Tier definition for EFSA 2012 Pessimistic - Acute.
Name Setting
Risk type Acute
Dietary intake calculation method DistributionEstimates
Refined method choice false
Sample based true
Consumptions on the same day come from the same sample true
Processing factor model FixedAllowHigher
Unit variability model BetaDistribution
Estimates nature Realistic
Unit variability parameter VariabilityFactor
Covariate modelling false
Iterate survey false
Report consumptions and exposures per individual instead of per
kg body weight

false

Input tiers

Table 2.87: Input tiers for EFSA 2012 Pessimistic - Acute.
Module Input tier
Concentration models EFSA 2012 Pessimistic - Acute
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EFSA 2012 Pessimistic - Chronic

Chronic probabilistic exposure assessment using the pessimistic model settings according to the EFSA Guidance
2012. Only processing factors > 1 are applied.

Table 2.88: Tier definition for EFSA 2012 Pessimistic - Chronic.
Name Setting
Risk type Chronic
Compute exposures based on total diet study data false
Dietary intake calculation method DistributionEstimates
Refined method choice false
Sample based true
Consumptions on the same day come from the same sample true
Processing factor model FixedAllowHigher
Model type OIM
Model-then-add false
Covariate modelling false
Iterate survey false
Report consumptions and exposures per individual instead of per
kg body weight

false

Input tiers

Table 2.89: Input tiers for EFSA 2012 Pessimistic - Chronic.
Module Input tier
Concentration models EFSA 2012 Pessimistic - Chronic

EC 2018 Tier 1

Table 2.90: Tier definition for EC 2018 Tier 1.
Name Setting
Compute exposures based on total diet study data false
Dietary intake calculation method DistributionEstimates
Refined method choice false
Sample based true
Consumptions on the same day come from the same sample false
Processing factor model Fixed
Unit variability model BetaDistribution
Estimates nature Realistic
Unit variability parameter VariabilityFactor
Model type OIM
Model-then-add false
Covariate modelling false
Iterate survey false
Report consumptions and exposures per individual instead of per
kg body weight

false
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Input tiers

Table 2.91: Input tiers for EC 2018 Tier 1.
Module Input tier
Concentration models EC 2018 Tier 1

EC 2018 Tier 2

Table 2.92: Tier definition for EC 2018 Tier 2.
Name Setting
Compute exposures based on total diet study data false
Dietary intake calculation method DistributionEstimates
Refined method choice false
Sample based true
Consumptions on the same day come from the same sample false
Processing factor model Fixed
Unit variability model BetaDistribution
Estimates nature Realistic
Unit variability parameter VariabilityFactor
Model type OIM
Model-then-add false
Covariate modelling false
Iterate survey false
Report consumptions and exposures per individual instead of per
kg body weight

false

Input tiers

Table 2.93: Input tiers for EC 2018 Tier 2.
Module Input tier
Concentration models EC 2018 Tier 2

EFSA 2012 Pessimistic

Note: This tier is deprecated and has been replaced by separate acute/chronic tiers.

Probabilistic exposure assessment using the pessimistic model settings according to the EFSA Guidance 2012. Only
processing factors > 1 are applied. For unit variability, the Beta distribution is applied.
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Table 2.94: Tier definition for EFSA 2012 Pessimistic.
Name Setting
Compute exposures based on total diet study data false
Dietary intake calculation method DistributionEstimates
Refined method choice false
Sample based true
Consumptions on the same day come from the same sample true
Processing factor model FixedAllowHigher
Unit variability model BetaDistribution
Estimates nature Realistic
Unit variability parameter VariabilityFactor
Model type OIM
Model-then-add false
Covariate modelling false
Iterate survey false
Report consumptions and exposures per individual instead of per
kg body weight

false

Input tiers

Table 2.95: Input tiers for EFSA 2012 Pessimistic.
Module Input tier
Concentration models EFSA 2012 Pessimistic

Calculation of dietary exposures

Dietary exposures are calculated from consumptions per food-as-measured and concentration models. Optionally,
also processing factors and unit variability models are applied.

• Dietary exposures calculation

Inputs used: Consumptions by food as measured Concentration models Processing factors Unit variability factors
Dietary exposures with screening Active substances Relative potency factors

Settings used
• Calculation Settings

2.4.3 Dietary exposures with screening

Dietary exposures with screening are just dietary exposures, but the calculation includes a prior screening step to
identify the main risk drivers (food-substance combinations). This allows computations with more substances by
suppressing some details for less important food-substance combinations.
This module has as primary entities: Foods Substances Effects
Output of this module is used by: Dietary exposures

Dietary exposures with screening calculation

A full Monte Carlo analysis can be unwieldy for large cumulative assessment groups (CAGs) and/or large number of
foods or concentration data. An algorithmic approach was developed to handle large CAGs. Two unique features of
MCRA are:
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• contributions to the exposure results can be seen both in terms of food-as-eaten (e.g. white bread) and foods-
as-measured (e.g. wheat), and

• a drill-down can be made into the exact foods and compounds contributing for simulated individuals or
individual-days in the upper tail.

The number of combinations of simulation, compound, food-as-measured and food-as-eaten can be very large. To
avoid memory problems with very large datasets, an additional optional modelling step, named Screening, was added
to MCRA. Screening should be used if the data dimensions are too large for a direct analysis. Screening identifies
risk drivers. A full analysis based on screened risk drivers will still retain all food/compound combinations in the
exposure calculation, and will therefore produce exactly the same cumulative exposure distribution, and allow to
see contributions of all compounds and all foods-as-measured. Details with respect to foods-as-eaten are however
restricted to the risk drivers selected in the screening step.
The two-step approach consists of:

• Step 1: Data screening and selection of risk drivers Run a simple analysis for each potential
source/compound combination (SCC). Here source means the combination of food-as-eaten and
food-as-measured, for example apple in apple pie. The screening is based on this combination, and not
just foods-as-measured, to avoid problems with potentially multi-modal consumption distributions as
much as possible (see van der Voet et al. 2014). SCCs are also referred to as risk driver components. The
screening step in MCRA implements a simple model that is applied to each SCC. The model calculates a
percentile of interest in a distribution, consisting of a spike of zeroes (non-consumptions), and a mixture
of two lognormal distributions for the exposure related to non-detects and positive concentrations,
respectively. SCCs (risk driver components) can be combined to measured source/compound combi-
nations (MSCCs, risk drivers). For example APPLE/apple juice/captan and APPLE/apple pie/captan
combine to APPLE/captan. MCRA has an interface which identifies the Top-N SCCs (based on a chosen
exposure percentile, e.g. p95) with an option to select N based on cumulative importance according to
some criterion. Remark: Screening is performed before concentration modelling. Therefore there is no
correction for processing factors at the screening stage.

• Step 2: Full MC analysis Perform the standardMC to all combinations of compounds and foods, but restrict
the stored information regarding foods-as-eaten to the SCCs selected in step 1.

The screening method requires to specify:
• Which percentile to consider for each single Source-Compound Combination (SCC, potential risk driver com-
ponent) (default p95)

• Which percentage of all exposures (according to the screening model) should be covered by the selected set of
SCCs (default 95%)

• How to impute non-detect concentrations (c < LOR) in the screening step. The choice of a factor 0 (default)
represents optimistic imputation, the choice of a factor 1 represents a pessimistic imputation. It may be noted
that a factor 1 (pessimistic imputation) may select many SCCs (risk driver components) with relatively high
LORs and high RPFs, but with only nondetect measurements. Choosing a lower fraction, e.g. 0.25 can be
useful if a more realistic method is sought.

Based on limited experience with the EFSA test data, useful settings of these three screening parameters were found
to be (95, 95, 0) in preparation for an EFSA optimistic run, and (50, 95, 0.25) in preparation for an EFSA pessimistic
run. See also screening calculatuion acute exposure and chronic exposure .

Dietary exposures with screening settings
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Calculation settings

Table 2.96: Calculation settings for module Dietary exposures with screen-
ing.

Name Description
Percentage defining the
exposure percentile of interest
per food-as-eaten/food-as-
measured/substance
combination

Percentage defining the exposure percentile of interest per
food-as-eaten/food-as-measured/substance combination.

Include risk drivers to include
minimally a percentage

The selection criterion for the risk drivers. The cumulative
contribution percentage of the selected risk drivers will be this
percentage.

Non-detect replacement: factor
x LOR

A constant between 0 and 1. A value 0 can be used for an
optimistic screening (LOR not used). Note that a factor 0.5
(pessimistic) may result in many and often high contributions
from food-substance combinations with only non-detects.

Calculation of dietary exposures with screening

Screening results are computed for each combination of source (being a specific combination of food-as-eaten/food-
as-measured) and substance by combining simple approximations of the consumption and the concentration distri-
bution.

• Dietary exposures with screening calculation

Inputs used: Consumptions by food as measured Concentration models Active substances Relative potency factors
Settings used

• Calculation Settings

2.4.4 Exposures

Exposures are amounts of substances, typically expressed per mass unit and per day, to which individuals in a popula-
tion are exposed at a chosen target level. This target level may be external exposure (dietary exposure, expressed per
unit body weight, or per person) or internal exposure (expressed per unit organ weight). Internal exposures may be
aggregated from dietary and non-dietary exposures using either absorption factors or kinetic models to translate the
external exposures to internal exposures. Exposures can be short-term/acute exposures and then contain exposures
for individual-days, or they can be long-term/chronic exposures, in which case they represent the average exposure
per day over an unspecified longer time period.
This module has as primary entities: Populations Foods Substances
Output of this module is used by: Exposure mixtures Human monitoring analysis Risks

Exposures calculation

Calculation of exposures comprises two main steps:
1. Linking dietary and non-dietary individual/individual-day exposures.
2. Computing the (aggregated) internal exposures at the specified target compartment.

Both steps are optional in this module. If none is selected, exposures are external dietary exposures, i.e the target
level is external/dietary. However, when multiple routes of exposure are considered, then the target level should be
an internal compartment (organ). In the latter case, absorption factors or kinetic model are needed to aggregate the
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exposures from multiple routes into exposure at the target compartment. It is also possible to only provide dietary
exposures and compute internal exposures at some target compartment.
In cumulative exposure calculations two simple approaches are used to identify and select mixtures contributing to
the exposure of a target population:

1. qualitative approach: counting of co-exposure. To which combinations of compounds are individuals exposed?
2. quantitative approach: maximum cumulative ratio (MCR). To what degree are mixtures more important than

single compounds?
A quantitative approach is available in the exposures mixtures module.

Combining dietary and non-dietary exposures

If dietary and non-dietary exposures are available for the same individuals or individual-days, the non-dietary ex-
posures can be matched to specific individuals of the food survey from which the dietary exposures are generated.
More commonly, dietary and non-dietary exposures are available from separate surveus, in which case they can be
randomly combined. If both dietary and non-dietary information is available for a known population of individuals,
the user may select the matching option such that specific dietary and non-dietary estimates are aggregated for each
individual in the food survey population. If matching is enabled, any non-dietary exposures that do not correspond to
individuals from the food survey will be ignored (see Example 2), unless an individual is specified with id = General.
In that case, the dietary individual should meet the criteria of the non-dietary survey, specified by the survey proper-
ties, to be assigned. If the non-dietary data relates instead to a population in which individuals have no corresponding
records in the food survey (unmatched case), the user may choose to randomly assign the non-dietary exposures to
the individuals from the food survey.
When multiple non-dietary surveys are available, the options with or without correlation are important (not relevant
when matching is switched on). When correlation is chosen, the exposure contributions of non-dietary individuals
with identical ids in different surveys are combined and allocated to a randomly selected dietary individual. When
the correlation is not chosen, the non-dietary exposures of randomly selected individuals from different surveys are
combined and allocated to a dietary individual.
The user may also define demographic criteria for the assignment (for each source of non-dietary exposure) to indicate
that those exposures are relevant only to a defined sub-population. Only those individuals in the food survey who
meet the criteria of the non-dietary survey will be assigned non-dietary exposures from that source e.g. only males
aged 18 to 65 (see Example 1). The simplest assessment consists of a single (deterministic) non-dietary exposure
estimate which is assigned to all individuals in the food survey (idIndividual = General). This case, and more complex
possibilities are illustrated below using hypothetical examples.

Example 1

Deterministic cumulative (multi-substance) non-dietary exposure input, adult male sub-population. Unmatched case.

Table 2.97: NonDietaryExposures
idIndividual idNonDietarySurvey idSubstance Dermal Oral Inhalation
General 1 011003001 10 5 17
General 1 011003002 34 20 18
General 1 011003002 56 43 19

Table 2.98: NonDietarySurveys
idNonDietary-
Survey

Description Location Date NonDietary-
IntakeUnit

1 BROWSE, acute,
cumulative,
operators

York 09/10/2012 𝜇𝑔/𝑑𝑎𝑦
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Figure 2.21: Aggregate exposure distributions.

Table 2.99: NonDietarySurveyProperties
idNonDietary-
Survey

Property-
IndividualName

Individual-
PropertyText-
Value

Individual-
Property-
DoubleMin-
Value

Individual-
Property-
DoubleMax-
Value

1 Age 18 65
1 Gender Male

In this example, there are exposure values for multiple substances in Table 2.97 and the user has provided Table 2.99
which specifies that the non-dietary exposures given in survey number 1 relate to males aged 18 to 65.
When this assessment is performed, only those individuals whose property values fit the criteria in Table 2.99 will
receive the non-dietary exposures in survey 1. The use of idIndividual = General indicates that this is the default expo-
sure. All individuals in the dietary survey meeting the criteria receive all exposures given in the 3 rows, corresponding
to 3 substances. The following should be noted:

• There should only ever be one General entry in the dietary exposures table per substance, survey combination.
• The property names and the values of any text properties must precisely match those given in the Individual-
Properties and IndividualPropertyValues tables for this to work.

• The minimum and maximum values for numeric properties are both inclusive boundaries.
So in this example, all males aged 18 to 65 will receive the given exposures of all three substances and the other
members of the population will receive no non-dietary exposure. Note that example 1 describes the unmatched case.

Example 2

Variability (but no uncertainty) in cumulative non-dietary exposure input (matched to dietary survey individuals).
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Table 2.100: NonDietaryExposures
idIndividual idNonDietarySurvey idSubstance Dermal Oral
5432 1 011003001 10 5
5432 1 011003002 33 22
5433 1 011003001 12 7
5433 1 011003002 34 23
5434 1 011003001 18 9
5434 1 011003002 35 25
5435 1 011003001 10 5
5435 1 011003002 33 21

Table 2.101: NonDietarySurveys
idNonDietary-
Survey

Description Loca-
tion

Date NonDietaryIntakeU-
nit

1 BROWSE, acute, cumulative, opera-
tors

York 09/10/2012 𝜇𝑔/𝑑𝑎𝑦

In this example, the non-dietary exposures are being specified explicitly for individuals in the dietary population.
Switch ‘matching’ on to allow exposure variability to be specified at the individual level. For the purposes of illustra-
tion, the population is extremely small, consisting of only four individuals. The values in the idIndividual column of
Table 2.100 match those in the Individuals table (dietary population).
It is not mandatory to specify exposures for every individual in the population. Those not included will simply receive
a zero non-dietary exposure, unless there is also a default exposure value (General row(s) in Table 2.100) and the
individual matches the specified demographic criteria for the survey, as specified in Table 2.99. (In this example, a
default exposure would apply to all individuals not listed in Table 2.100 because Table 2.99 has not been used).
There is variability between individuals in this example, but no uncertainty in exposure. Note that these data could
also be used with matching switched off. This would be the same as treating the idIndividual values as generic
individuals, so that each pair of exposure lines would be assigned at random to individuals meeting the criteria.

Example 3

Variability (no uncertainty) in cumulative non-dietary exposure input (unmatched individuals).

Table 2.102: NonDietaryExposures
idIndividual idNonDietarySurvey idSubstance Dermal Oral Inhalation
ND1 1 011003001 10 5 17
ND1 1 011003002 33 22 45
ND2 1 011003001 12 7 18
ND2 1 011003002 34 23 47
ND3 1 011003001 18 9 19
ND3 1 011003002 35 25 49
ND4 1 011003001 10 5 17
ND4 1 011003002 33 21 45

Table 2.103: NonDietarySurveys
idNonDietary-
Survey

Description Loca-
tion

Date NonDietaryIntakeU-
nit

1 BROWSE, acute, cumulative, opera-
tors

York 09/10/2012 𝜇𝑔/𝑑𝑎𝑦
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Table 2.104: NonDietarySurveyProperties
idNonDi-
etarySurvey

PropertyIndi-
vidualName

IndividualProper-
tyTextValue

IndividualProperty-
DoubleMinValue

IndividualProperty-
DoubleMaxValue

1 Age 50 65
1 Gender Female

This example is similar to example 2, except that the values in the idIndividual column of Table 2.102 do not match
those in the Individuals table. In this instance, ‘matching’ would not be an option, and the non-dietary exposures
would be randomly assigned to individuals who meet the criteria in Table 2.104. (In fact for the same result rather
than changing the values in the idIndividual column in Table 2.100 from the previous example may be used with
matching switched off). Exposures in Table 2.102 will be recycled if the number of exposure rows is less than the
number of dietary records with which to aggregate exposures.
Again, there is variability between individuals in this example, but no uncertainty in exposure.
By allowing generic idIndividual values in this way, correlations between different sources (within individual) can
be accounted for even in the unmatched case. If the same idIndividual value is used in different surveys, then the
corresponding exposure values will be kept together and assigned to an eligible individual as a combined exposure.
So for option matching switched of, it is relevant whether individuals are correlated or not. In the following example,
two non-dietary surveys are available, per survey three individuals are specified.

Table 2.105: matching switched of, with correlation or without.
idIndividual idNonDietarySurvey idSubstance Dermal Oral Inhalation
ND0 1 011003001 10 5 17
ND1 1 011003001 23 22 45
ND2 1 011003001 12 7 18
ND0 1 011003001 34 23 47
ND3 1 011003001 18 9 19
ND4 1 011003001 33 16 35

• When a correlation is applied, the non-dietary exposure for individual ND0 from survey 1 and 2 are combined
and allocated to a dietary individual. For individual ND1, ND2, ND3 and ND4 just a single non-dietary
exposure is found and allocated to a dietary individual.

• When no correlation is applied, the exposure for individual ND0 from survey 1 is combined with one of the
exposures of ND0, ND3 or ND4 from survey 2; exposure of ND1 from survey 1 is combined with one of the
exposures of ND0, ND3 or ND4 from survey 2, etc.

When the intention is to sample just one exposure for a dietary individual, specify per survey different codes, e.g.
ND1, ND2, ND3 for survey 1, ND4, ND5, ND6 for survey 2 and apply correlation, or specify 6 different individual
codes and just one idNonDietarySurvey. Then, options with or without correlation are irrelevant and sampling results
are identical no matter which option is chosen.

Internal exposures calculation

Computation of internal exposures (internal substance amounts and concentrations) requires a kinetic model to trans-
late external doses, possibly from multiple routes, to internal doses at the target compartment/organ of interest.

Calculation of internal concentrations using absorption factors

In the simplest form, internal concentrations are derived from external exposure concentrations using multiplication
factors (or, absorption factors) that can be specified by substance and by route. That is, for a given substance, the
internal exposure expint is computed as

expint = ∑
𝑟∈Routes

fabs,𝑟 ⋅ expext,𝑟
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Figure 2.22: Contributions by route to aggregate exposure distributions.

Here, Routes denotes the set external exposure routes, expext,𝑟 denotes the external exposure for route 𝑟 and fabs,𝑟
denotes the absorption factor of route 𝑟. Note that this model assumes that both external and internal exposures refer
to amounts or concentrations depending on the dietary exposures setting (External exposure: substance amount per
individual, or substance amount divided by body weight; internal exposure: substance amount per organ, or substance
amount divided by organ weight.) Also, both external and internal exposures are expressed per day.

Calculation of internal concentrations using kinetic models

Amore detailed alternative to using absorption factors is to use one of the advanced kinetic models available inMCRA.
In this approach, for each substance independently, the external exposures of an individual (chronic) or individual-day
(acute) are presented for a number of simulated day to a PBK model of the individual. This yields a time course of
the internal substance amount at the specified target compartment/organ from which a long term average substance
amount (chronic) or peak substance amount (acute) can be obtained. An example of such a time course is given in
Figure 2.23 for acute exposure assessments, and in Figure 2.24 for chronic exposure assessments. By dividing this
substance amount by the weight of the compartment, an internal concentration is obtained. Notice that this procedure
also changes the unit of the exposures from exposure per day to long term exposure.
Mathematically, the calculation of the peak substance amount (dpeak) for deriving acute internal exposures is as
follows:

dpeak = max
𝑖=0,…,𝑛stop

{𝑑(𝑡start + 𝑖Δ𝑡)} .

Here, 𝑑(𝑡) denotes the substance amount at time 𝑡, 𝑡start denotes the starting time of the evaluation window (defined
by the non-stationary period), Δ𝑡 denotes the time resolution of the kinetic model (e.g., hours or minutes), and 𝑛stop

denotes the total number of time-points, marking the end of the evaluation window (defined by the specified number
of simulation days), which is computed as

𝑛stop = ⌊𝑡stop − 𝑡start
Δ𝑡 ⌋ .

Likewise, chronic long term average substance amounts (davg) are computed as:

davg = ∑𝑛stop

𝑖=0 𝑑(𝑡start + 𝑖Δ𝑡)
𝑛stop

.
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Figure 2.23: Time course of the internal substance amount when applying the same single dose on each day. The
acute internal concentration is derived as the peak substance amount (the green line in the figure) divided by the
compartment weight. The vertical line at 50 indicates the selected end of an assumed non-stationary period, defining
a burn-in period that is to be ignored for computing the peak substance amount.
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Figure 2.24: Time course of the internal substance amount when randomly applying one of the individual-day doses
for a number days. The chronic internal concentration is derived as the average substance amount (the blue line in
the figure), divided by the compartment weight. The vertical line at 50 indicates the selected end of an assumed
non-stationary period, defining a burn-in period that is to be ignored for computing the average substance amount.
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Dosing patterns

In MCRA, the dietary and non-dietary exposures are computed at the level of exposures per day. However, when
applying advanced PBK models, dosing patterns may be specified at a much finer resolution (e.g., hours or minutes).
For this, a method is needed to translate external exposures provided per day to dosing patterns of substance amounts
during the day. The simplest, yet not very realistic model is to apply, per route, the full exposure amount in one single
dose at the beginning of the day. Alternatively, MCRA offers the possibility to specify, per route, the number of
exposure events per day. If it is specified to use multiple doses per day, then the total substance amount of each day
is divided into equal portions which are applied at regular time-intervals during the day.

Non-stationary period

Especially in the case of chronic exposure assessments, where a long term average exposure is computed based on
the simulated time-course, it is important to realise that at time zero, the substance is commonly considered to be
completely absent in the simulated system. However, this is not a realistic assumption. It is much more likely that
the substance was already present in the system, and that the level is equal to the level obtained from applying the
same chronic exposures to the system. For this, a specification of the number of days skipped (or burn-in period) is
required in order to come to these initial concentration levels. This period is not used for computing the long term
average or peak exposures, but just to determine initial (background) concentration levels.

Counting of co-exposure

In this qualitative approach, the number of combinations of substances to which an individual is exposed are recorded,
see Table 2.106. There is no cut-off level, the only criterion is the presence of a substance in the simulated daily diet
or not. For an acute or short term exposure assessment, a simulated individual day is the smallest entity to determine
co-exposure. For a chronic or long term exposure assessment, co-exposures are summarized at the individual level,
e.g. co-exposure is determined combining all consumption days of an individual.

Table 2.106: Counting combinations of substances in the exposure matrix:
for example, on day 1 there is coexposure to substances Tebuconazole,
Bitertanol and Triadimefon

Substance day 1 day 2 day 3 … day n
Tebuconazole x x …
Bitertanol x x … x
Triadimefon x … … x
… … … … … …

In Table 2.107, the frequency and percentage for the number of substances occurring together are shown.

Table 2.107: Co-exposure of substances
Number of substances Frequency Percentage
0 337 3.4
1 959 9.6
2 1207 12.1
3 1275 12.8
… … …

In Table 2.108, the mixtures containing the substance(s) including all other combinations with the specified combi-
nation of substance(s), (a maximum number of 15 records are shown)
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Table 2.108: Mixtures containing substances
Number of substances Percentage Substances
1 5.88 Tebuconazole
2 3.88 Imazalil (aka enilconazole), Tebuconazole
0 3.37
3 2.20 Difenoconazole, Imazalil (aka enilconazole), Tebuconazole
1 1.78 Imazalil (aka enilconazole)
3 1.76 Imazalil (aka enilconazole), Tebuconazole, Triadimenol
… … …

Maximum Cumulative Ratio

Price and Han [38] propose the Maximum Cumulative Ratio (MCR) which is defined as the ratio of the cumulative
exposure received by an individual on an intake day to the largest exposure received from a single substance:

MCR = Cumulative exposure/ Maximum exposure
ThisMCR statistic is also picked up as a practical device in a recent JRC report [8] to investigate cumulative exposure.
If MCR is large, it is important to consider cumulative effects, if MCR is close to 1, the individual exposure will not
be much different from a single-substance assessment. The MCR can therefore be interpreted as the degree to which
the risk of being exposed is underestimated by not performing a cumulative risk assessment.
The MCR statistic is implemented in MCRA for both the acute risk and the chronic risk cases. In the acute risk case
the short-term (single-day) exposures are used, in the chronic case the long-term individual exposures (estimated by
aggregating over the available survey days of each individual).
Table 2.109 shows an artificial example how the MCR is calculated in the acute risk case. First the cumulative
exposure per day is calculated by cumulating the exposure of each substance multiplied by the relative potency factors
(RPF). Then, for each day, the cumulative exposure (in equivalents of the reference substance) is divided by the
maximum exposure of a single substance on that day. The last column shows the MCR values within parenthesis
the substance with the highest exposure. The MCR has a value of 1 or close to 1 for mixtures where the exposure is
dominated by one substance (e.g. day 1, substance B). When all substances have approximately equal exposure (e.g.
day 3) the MCR value is equal or close to the number of substances, here 4. Day 2 represents an intermediate case.
The MCR suggest that for exposure days (or persons) with MCR values close to 1, the need for a cumulative risk
assessment is low.

Table 2.109: Maximum Cumulative Ratios
Substance A Substance B Substance C Substance D total exposure ratio

day 1 0.01 0.99 0 0 1 1.01 (B)
day 2 0.1 0.2 0.3 0.4 1 2.50 (D)
day 3 0.25 0.25 0.24 0.26 1 3.99 (D)

In the example, all days have equal values for total exposure. For real data, total exposure will vary. It is obviously
of interest to know if the MCR is high or low at those days (or individuals) where the total exposure is highest.
In Figure 2.25, French steatosis data (39 substances, 4079 persons) are used to calculate the chronic exposure matrix.
For each indiviual the MCR is calculated and plotted against the total exposure. The different colors are used to
identify the single substances with maximum exposure. From the original 39 substances, 10 different substances have
the largest exposures. For the total exposure and MCR, the p5, p50 and p95 percentiles are indicated with the black
line segments. The red line indicates the ratio with value 5. The dashed green lines indicate the p95 percentiles for
the MCR value for different ranges of the total exposure.
The plot shows that MCR values with Imazalil as risk driving substance (purple) are predominantly found in the lower
part of the plot for relatively high values of the total exposure. A second finding is that MCR values decline when total
exposure increases. This implies that cumulative exposure for most individuals is driven by multiple substances. At
the right site of the plot, individuals are found with high exposure. Because MCR values tend to be lower here, higher
exposures are received from one predominant substance and not because many substances are above the average level.
For those individuals a cumulative risk assessment has less value.
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Using MCR to identify substances that drive cumulative exposures

Epoxiconazole Hexaconazole Tebuconazole Flutriafol Propiconazole
Cyproconazole Difenoconazole Tetraconazole Triadimenol Flusilazole
Diniconazole Fenbuconazole Penconazole Myclobutanil Triadimefon
Bitertanol Imazalil (aka enilconazole)

Figure 2.25: Maximum Cumulative Ratios vs total exposure
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Because Figure 2.25 can be very dense, in Figure 2.26, 95% confidence regions representing bivariate lognormal
distributions of MCR and total exposure are plotted. The latter figure facilitates interpretation of the first figure. Note
that substances with just one or two observations cannot be plotted in this display (substances with 2 observations are
represented by a line).
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Figure 2.26: Bivariate distributions MCR vs total exposure

Exposures settings
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Calculation settings

Table 2.110: Calculation settings for module Exposures.
Name Description
Risk type The type of exposure considered in the assessment; acute (short

term) or chronic (long-term).
Express results in terms of
reference substance equivalents
(cumulative)

Specifies whether the assessment involves multiple substances and
results should be cumulated over all substances.

Include dietary and non-dietary
routes of exposure

Specifies whether the assessment involves both dietary and
non-dietary (oral, inhalatory or dermal) routes of exposure.

Target level Select to express hazard characterisations at external or internal
exposure level.

Match non-dietary to dietary
survey individuals

Specifies whether the individuals of one or more non-dietary
surveys should be matched to individuals in the dietary survey
according to the individual codes (idIndividual). If unchecked,
nondietary exposures are randomly allocated to dietary survey
individuals.

Match individuals of multiple
non-dietary surveys

If checked, exposures from identical individuals in non-dietary
surveys are aggregated to obtain the overall nondietary exposures.
If unchecked, exposures from random individuals in all
non-dietary surveys are aggregated.
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Output settings

Table 2.111: Output settings for module Exposures.
Name Description
Include drill-down on 9
individuals around specified
percentile.

Specifies whether drilldown on 9 individuals is to be included in
the output.

Summarize simulated data Specifies whether a summary of the simulated consumptions and
concentrations should be included in the output.

Store simulated individual day
exposures

Store the simulated individual day exposures. If unchecked, no
additional output will be generated. If checked, the output will
contain an additional section with the simulated individual day
exposures.

Show percentiles for Give specific percentiles of exposure distribution (%), e.g. 50 90
95 97.5 99 (space separated).

Percentage for drilldown Gives detailed output for nine individuals near this percentile of
the exposure distribution.

Percentage for upper tail Gives detailed output for this upper percentage of the exposure
distribution.

Show % of population below
level(s)

Exposure levels can be generated automatically or by explicit
specification (Manual).

Exposure levels Specify exposure levels for which to give the percentage of
exposure below these levels, e.g. 1 10 50 100 200 500. Specify
below whether these levels are absolute or relative to ARfD/ADI.

Exposure levels are Specify whether exposure levels are absolute or percentages of
ARfD/ADI.

Number of levels of covariable
to predict exposure

Specify the number of levels, e.g. 20. The range of the covariable
is divided by the number of levels: range = (max - min)/levels.
For these covariable levels exposures are predicted.

Predict exposure at extra
covariable levels

Specify specific prediction levels in addition to the automatically
generated prediction levels (space separated).

Lower percentage for
variability (%)

The default value of 25% may be overruled.

Upper percentage for
variability (%)

The default value of 75% may be overruled.

Uncertainty settings

Table 2.112: Uncertainty settings for module Exposures.
Name Description
Resample kinetic model
parameter values

Specifies whether kinetic model parameter values are resampled.

Calculation of exposures

Exposures are computed by linking dietary and (if available) non-dietary individual/individual-day exposures and
computing the (aggregated) internal exposures at the specified target compartment.

• Exposures calculation

Inputs used: Dietary exposures Non-dietary exposures Active substances Relative potency factors Kinetic models
Settings used

• Calculation Settings
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2.4.5 Exposure mixtures

Exposure mixtures are mixtures of substances that contribute relatively much to the overall cumulative exposure
(potential risk drivers).
This module has as primary entities: Foods Substances Effects

Exposure mixtures calculation

The most common model of cumulative risk assessment is to focus on substances that belong to the same common
assessment groups (CAG). Substances in such a group belong to the same chemical family and may or may not
have a similar mode of action. In assessing the risk, possible interactions between substances are often ignored
and, moreover, little information is available about synergistic effects at low doses. More information is needed
about the combined effects of such substances, but it is impractical to investigate all possible mixtures, and therefore
instruments are needed to select the most relevant compounds for further investigation. This selection should not only
be based on the hazard (highest relative potencies) but also on the exposure of the population to these substances. The
potential risk of being exposed to chemicals in a mixture depends on the food consumption patterns of individuals
in a population. A regular diet can contain hundreds of substances, so the number of combinations of compounds
to which an individual in a population is exposed can be numerous. The exposures m,ixtures module can be used to
identify the most relevant mixtures to which a population is exposed.
Exposure mixtures are identified using a quantitative approach: sparse non-negative matrix underapproximation
(SNMU). What mixtures predominantly determine the underlying patterns in the exposurematrix (compound x person
(day))?
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Figure 2.27: Example of co-exposure distribution (from >1 compound per individual-day, red) super-imposed on
the total exposure distribution (blue).
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Sparse nonnegative matrix underapproximation

Starting point to identify major mixtures of substances using exposure data was to use Non-negative Matrix Factor-
ization (NMF). Non-negative Matrix Factorization was proposed by Lee & Seung [32] and Saul & Lee [39] and deals
specifically with non-negative data that have excess zeros such as exposure data. Zetlaoui et al. [48], introduced this
method in food risk assessment to define diet clusters.
The NMF method was then implemented by Béchaux et al. [11] in order to identify food consumption patterns and
main mixtures of pesticides to which the French population was exposed using TDS exposure to 26 priority pesticides.
At the start of the Euromix project ideas had evolved: to obtain less components per mixture experiments were made
using Sparse Nonnegative Matrix Factorization (SNMF) [23]. This method was found not to give stable solutions.
Better results were obtained with Sparse NonnegativeMatrix Underapproximation (SNMU) [20]. This model also fits
better to the problem situation because also the residual matrix after extracting some mixtures should be nonnegative.
The SNMU method has been implemented in MCRA.
Indeed, NMF may be used to identify patterns or associations between substances in exposure data. NMF can be
described as amethod that finds a description of the data in a lower dimension. There are standard techniques available
such as principal components analysis or factor analysis that do the same, but their lower rank representation is less
suited because they contain negative values which makes interpretation hard and because of the modelling with a
Gaussian random vectors which do not correctly deal with the excess of 0 and non-negative data. The NMF solution
approximates a non-negative input matrix (i.c. exposure data) by two constrained non-negative matrices in a lower
dimension such that the product of the two is as close as possible to the original input matrix. In Figure 2.28,
the exposure matrix 𝑀 with dimensions 𝑚 (number of compounds) and 𝑛 (number of intake days or persons) is
approximated by matrix 𝑈 and 𝑉 with dimensions (𝑚 × 𝑘) and (𝑘 × 𝑛) respectively, where 𝑘 represents the number
of mixtures. Matrix𝑈 contains weights of the compounds per mixture, matrix 𝑉 contains the coefficients of presence
of mixtures in exposure per intake day or person. 𝑀 is non-negative (zero or positive) and 𝑈 and 𝑉 are constraint
to be non-negative. The minimization criterium is: ||𝑀–𝑈𝑉 ||2 such that 𝑈 ≥ 0 and 𝑉 ≥ 0.

Figure 2.28: NMF approximation of exposure data

The solution found by NMF contains zeros, but mixtures still contain many components which complicates inter-
pretability. Therefore, the Sparse Nonnegative Matrix Underapproximation (SNMU) [20] which also provide sparse
results was investigated. The SNMU has also some nice features well adapted to the objective of the Euromix
project: the solution is independent of the initialization and the algorithm is recursive. Consequently, the SNMU
method which is based on the same decomposition process as the NMF was the one implemented in MCRA.
SNMU is initialized using an optimal nonnegative rank-one approximation using the power method (https://en.
wikipedia.org/wiki/Power_iteration). This initialization is based on a singular value decomposition and results in
general in a unique solution that is sparse. The SNMU algorithm is called recursive because after identifying the first
optimal rank-one underapproximation 𝑢1𝑣1, the next rank-one factor is recovered by subtracting 𝑢1𝑣1 from 𝑀 and
applying the same factorization algorithm to the remainder 𝑀 − 𝑢1𝑣1. The solution 𝑢1𝑣1 is called a rank-one under-
approximation because an upper bound constraint is added to ensure that the remainder 𝑀 − 𝑢1𝑣1 is non-negative.
For Matlab code see: https://sites.google.com/site/nicolasgillis/code.
For eachmixture, a percentage of explained variance is calculated. 𝑀 is the exposurematrix with𝑚 rows (substances)
and 𝑛 columns (individuals or individual days) 𝑆𝑡 is sum of squared elements of 𝑀 :

𝑆𝑡 = ||𝑀||2 =
𝑚,𝑛
∑
𝑖,𝑗

𝑒2
𝑖,𝑗
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Apply SNMU on 𝑀 , then for the first mixture:
• 𝑢 is 𝑚 × 1 vector, contains weights of the mixture.
• 𝑣 is 1 × 𝑛 vector, contains presence of mixture in exposure per individual.

Calculate residual matrix 𝑅:
𝑅 = 𝑀 − 𝑢𝑣

Calculate 𝑆𝑟, residual sum of squared elements of R:

𝑆𝑟 = ||𝑅||2 =
𝑚,𝑛
∑
𝑖,𝑗

𝑒2
𝑖,𝑗

Percentage explained variance first mixture (𝑘 = 1) is:
𝑉𝑘 = (1 − 𝑆𝑟)/𝑆𝑡) ⋅ 100

For the second mixture:
1. continue with residual matrix 𝑅 (replace 𝑀 by 𝑅),
2. estimate 𝑢 and 𝑣,
3. calculate new residual matrix 𝑅
4. calculate 𝑆𝑟, residual sum of squared elements of 𝑅

Percentage explained variance second mixture (𝑘 = 2) is:

𝑉𝑘 = (1 − 𝑆𝑟)/𝑆𝑡) ⋅ 100 −
𝑘−1
∑
𝑙=1

𝑉𝑙

The last term is de percentage explained variance of the first mixture. Continue with the third mixture etc….

Exposure matrix

Basically, exposure is calculated as consumption x concentration. By summing the exposures from the different foods
for each compound per person day separately, the exposure matrix for mixture selection is estimated:

𝑦𝑖𝑗𝑐 = ∑𝑝
𝑘=1 𝑥𝑖𝑗𝑘𝑐𝑖𝑗𝑘𝑐

𝑏𝑤𝑖

where 𝑦𝑖𝑗𝑐 is the exposure to compound 𝑐 by individual 𝑖 on day 𝑗 (in microgram substance per kg body weight),
𝑥𝑖𝑗𝑘 is the consumption by individual 𝑖 on day 𝑗 of food 𝑘 (in g), 𝑐𝑖𝑗𝑘𝑐 is the concentration of compound 𝑐 in food
𝑘 eaten by individual 𝑖 on day 𝑗 (in mg/kg), and 𝑏𝑤𝑖 is the body weight of individual 𝑖 (in kg). Finally, 𝑝 is the
number of foods accounted for in the model. More precisely, for an acute or short term risk assessment, the exposure
matrix summarises the 𝑦𝑖𝑗𝑐 with columns denoting the individual-days (𝑖𝑗) and rows denoting the compounds (𝑐).
Each cell represents the sum of the exposures for a compound on that particular day. For a chronic or long term risk
assessment, the exposure matrix is constructed as the sum of all exposures for a particular compound averaged over
the total number of intake days of an individual (compounds x persons). So each row represents a compound and a
column an individual. Each cell represents the observed individual mean exposure for a compound for that individual.
Note that in the exposure calculation, the concentration is the average of all residue values of a compound.
When relative potency factors (RPF) are available then exposures are multiplied by the RPF and thus exposures to
the different substances are on the same and comparable scale (toxicological scale). In this case, the selection of the
mixture is risk-based. In some cases, RPFs may not be available. In this case exposure to different substances, even
in the same unit, may lead to very different effect. To give all compounds an equal weight a priori and avoid scaling
effect, a normalization of the data can be applied as done in Béchaux et al. [11]. In this case, all compounds are
assigned equal mean and variance, and the selection of the mixtures will work on patterns of correlation only. Then
mixture selection is not risk-based anymore but, what could be called, co-exposure-based.
Finally, in the mixture selection module of MCRA, the SNMU expects RPF data for a risk-based selection. If
not available, the user should provide alternative RPF data, e.g. values 1 for a purely exposure-based selection, or
lower-tier estimates (e.g. a maximum value on RPF thought possible).
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Mechanisms to influence sparsity

Two mechanisms to influence sparsity are available. The SNMU algorithm incorporates a sparsity parameter and
by increasing the value, the final mixtures will be more sparse (sparsity close to 0: not sparse; sparsity close to 1:
sparse). The other approach is by using a subset of the exposure matrix based on a cut-off value for the MCR. High
ratios correspond to high co-exposure, so it is reasonable to focus on these (person) days and not include days where
exposure is received from a single compound (ratio close to 1). To illustrate the combined use of MCR and the
sparsity parameter, the French steatosis data (39 compounds, 4079 persons) are used and person days with a ratio >
5 (see Figure 2.25) are selected yielding a subset of 139 records.
In Figure 2.29, the effect of using a cut-off level is immediately clear. The number of compounds of the first mixture
is 17 whereas in the unselected case only 4 compounds were found The three plots show the influence of increasing
the sparsity parameter from 0 to 1 on the number of compounds in the mixture. For values close to 0, the mixture
contains 17 compounds. For values > 0.4 the number of compounds in the mixture drops to 3.

In Figure 2.30 and Figure 2.31 the sparsity parameter is set to 0.0001 (not sparse) and 0.4 (sparse), respectively. This
leads to mixtures containing different number of substances.
As mentioned before, one of the nice features of the SNMU algorithm is its recursive character which results in
identical mixtures. In Figure 2.32 and Figure 2.33, two U matrices are visualized. In the upper plot 4 mixtures are
estimated, in the lower plot the solution for 5 mixtures is shown. Because of the ordering the plots look different, but
a closer inspection of the first 4 mixtures of each solution shows that they are the same. In both figures, mixture 1
contains Imazalil, Thiacloprid, Deltamethrin (cis-deltamethrin) and Deltamethrin including other mixture.

Exposure mixtures settings
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Figure 2.29: Influence of the specified sparsity parameter on the realized sparsity, n = 139

128 Chapter 2. Modules



MCRA Documentation, Release 9.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flutolanil

Clothianidin

Imazalil

Etoxazole

Teflubenzuron

Acetamiprid

Flusilazole

Quinoxyfen

Trifloxystrobin

Famoxadone

Propiconazole

Tetraconazole

Spinosad (sum of Spinosyn A and Spinosyn D, expres

Iprodione

Tebuconazole

bamectin (sum of Avermectin B1a, AvermectinB1b an

Lenacil

Captan

Fenpropimorph

Metconazole

Epoxiconazole

Diflubenzuron

Prosulfocarb

Difenoconazole

Methoxyfenozide

Iprovalicarb

Fluazinam

Metrafenone

Spiroxamine

Dimethomorph

Lufenuron

Cymoxanil

Clofentezine

Chlorothalonil

Cypermethrin (Cypermethrin including other mixture

Deltamethrin (cis-deltamethrin)

Thiacloprid

1 2 3 4 5 6 7 8 9 10

Co-exposure of substances

Figure 2.30: Heatmap for a solutions with 10 mixtures. The sparsity is set to 0 (not sparse). Each mixture contains
many substances (see also Figure 2.31).
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Figure 2.31: Heatmap for a solutions with 10 mixtures. The sparsity is set to 0.4 (sparse). Mixtures contain less
substances compared to Figure 2.30.
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Figure 2.32: Heatmap for solution with 4 mixtures. The first 4 mixtures in Figure 2.32 and Figure 2.33 are identical.
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Figure 2.33: Heatmap for solution with 5 mixtures. The first 4 mixtures in Figure 2.32 and Figure 2.33 are identical.
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Calculation settings

Table 2.113: Calculation settings for module Exposure mixtures.
Name Description
Sparseness constraints Sparseness parameter. Should be a value between 0 (not sparse,

many substances) and 1 (sparse, few substances).
Number of mixtures The number of mixtures.
Number of iterations Number of iterations, e.g. 1000.
Seed for pseudo-random
number generator.

Random seed for initializing matrix W and H.

Exposures are Exposures are risk based (expressed in equivalents of the
reference substance) or standardized.

Convergence criterium Convergence criterium for factorization algorithm.
Cutoff for ratio total exposure/
maximum

For selection of individual(day) exposures specify cutoff for ratio
total exposure/ maximum.

Cutoff percentage (%) for total
exposure

For selection of individual(day) exposures specify cutoff
percentage (%) for total exposure.

Calculation of exposure mixtures

Amultivariate decomposition method, sparse non-negative matrix underestimation (SNMU), is applied to the matrix
of exposures per substance and per individual (chronic) or individual-day (acute) to find substance combinations that
contribute most to the cumulative exposure.

• Exposure mixtures calculation

Inputs used: Exposures
Settings used

• Calculation Settings

2.4.6 Food conversions

Food conversions relate foods-as-eaten, as found in the consumption data, to foods-as-measured, which are the foods
for which concentration data are available. A food-as-eaten can be linked to one, or multiple food-as-measured using
various conversion steps (e.g., using food recipes to translate a composite food to its ingredients, or using processing
information to relate a processed food to its unprocessed form). There are several types of conversion steps, and a
conversion path may comprise multiple conversion steps between a food-as-eaten and a food-as-measured.
This module has as primary entities: Foods Substances
Output of this module is used by: Consumptions by food as measured

Food conversions calculation

Food conversions are computed using a recursive search algorithm to link foods-as-eaten to foods-as-measured, pos-
sibly through intermediate conversion steps. For instance, if (unpeeled) apple and grapes are the foods-as-measured,
the food-as-eaten apple pie contains peeled apple and raisins, peeled apple is linked to unpeeled apple, and raisins
are dried grapes. Hence, for this apple pie, there are two conversions, one to apple and one to grapes, each with its
own conversion path of intermediate conversion steps.
For each food-as-eaten, the food conversion algorithm recurstively builds up the conversion paths using the the fol-
lowing 7-step procedure:

1. Check food-as-measured (step 1): Check whether the current food is considered a food-as-measured, i.e.,
it is a food for which substance concentration measurements are considered to be available. If successful, a
food-as-measured has been found, and the current search stops.
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2. Find processing link (step 2): Check whether the current food can be considered to be a processed variant
(e.g., cooked or peeled) of another food.
a. Match processing factor (step 2a): try to find the code in the processing factors table.
b. Processing link wildcard match (step 2b): try to find a wildcard match in the processing table.

Wildcard match codes consist of an initial string (startcode, may be empty), an asterisk (*), and
possibly a processing part (-processingtype). * may be any string endcode (not containing a -) such
that code equals startcodeendcode or startcodeendcode-processingtype.

i. If code contains a processing part (-processingtype), then the wildcard match code should also end
with -processingtype. Convert to the code specified in the field foodunprocessed, where endcode
is substituted for any * in the new code.

ii. If code contains no processing part, then the wildcard match code should also contain no processing
part. Convert to the code specified in the field foodunprocessed, where endcode is substituted for
any * in the new code.

If successful, try to find find food translation information in the food recipes data to correct for weight
reduction or increase. Then, restart at step 1 with the new code of the unprocessed food.

3. Food translation link (step 3): Check whether the current food translates to one or more other foods through
composition or read-across.

a. Food recipe link (step 3a): Try to find food translations for the current food (i.e., the ingredients of a compos-
ite food). This may result in one or more food codes for ingredients, and the iterative algorithm will proceed
with each of the ingredient food codes in turn.

b. TDS food sample composition link (step 3b): Try to find the code in the TDSFoodSampleCompositions
table (column idFood), a default translation proportion of 100% is assumed. The iterative algorithm will
proceed with a TDS food (column idTDSFood) sample.

c. Read-across link (step 3c): Try to find a food extrapolation rule for the current food, a default translation
proportion of 100% for ‘idToFood’ is assumed.

If successful, restart at step 1 with each of the new codes of the ingredient foods, TDS foods or Read Across foods.
4. Subtype link (step 4): try to find subtype codes, e.g. ‘xxx$*’ in the MarketShares table. In general, market-

shares should sum to 100%. Foods with marketshares not summing to 100% are ignored in the analysis unless
the checkbox ‘Allow marketshares not summing to 100%’ is checked. This step is optional, see advanced
settings if you want to use this. If successful, restart at step 1 with each of the new codes of the subtype foods.

5. Supertype link (step 5): try to find supertypes, e.g. ‘xxx$yyy’ is converted to ‘xxx’. This step is optional, see
advanced settings if you want to use this. If successful, restart at step 1 with the new code of the supertype
food.

6. Default processing factor (step 6): remove processing part (-xxx) of the code. If successful, restart at step 1
with the new code without processing part.

7. Maximum residue limit (step 7): try to find the code in the MaximumResidueLimits table. If successful, the
current search stops. If not successful, then stop anyway and the search is marked as failed food conversion.

Food conversion settings
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Calculation settings

Table 2.114: Calculation settings for module Food conversions.
Name Description
Include foods with only
non-detect measurements

Specifies whether foods with only non-detect measurements are
part of the exposure assessment (default yes).

Include substances with only
non-detect measurements

Specifies whether substances with only non-detect measurements
are part of the exposure assessment (default yes).

Include substances without
measurements

Specifies whether substances without any measurements should be
included.

Step 2: allow conversion using
processing info

Try to find the code in the processing table (step 2a). Processing
link wildcard match: try to find a wildcard match in the
processing table (step 2b) e.g. code FP026 matches FP* in
column FoodProcessed where ‘*’ is used as a wildcard match for
‘026’. Try to find the code in the FoodTranslation table (step 3a)
to account for weight reduction/increase. If unchecked,
processing table is ignored, default is ‘Use processing info’. If
successful, restart at step 1.

Step 3a: allow conversion using
food translations

Step 3a: Try to find food translations for the current food (i.e., the
ingredients of a composite food). This may result in one or more
food codes for ingredients, and the iterative algorithm will
proceed with each of the ingredient food codes in turn.

Step 3b: allow conversion using
TDS food sample compositions

Step 3b: Try to find the code in the TDS food sample
compositions table (idFood), a default translation proportion of
100% is assumed. The iterative algorithm will proceed with a
TDS food (column idTDSFood) sample.

Step 3c: allow conversion using
food extrapolations

Try to find read accross codes. If unchecked, read across table is
ignored, default is ‘Use read across info’. E.g. for pineapple no
measurements are found but by specifying that pineapple is
converted to FruitMix (with a default proportion of 100%), the
TDS sample concentration value of FruitMix will be used for
pineapple (as-eaten or as ingredient). If successful, restart at step
1.

Step 4: allow conversion using
market shares

Try to find subtype codes, e.g. ‘xxx$*’ in the market shares table.

Allow marketshares not
summing to 100%

Specify whether to rescale market share percentages that do not
sum to 100%. If true, then foods with marketshares not summing
to 100% are allowed. If not, then these foods are ignored in the
analysis.

Step 5: allow conversion to
supertypes

Try to find supertypes, e.g. ‘xxx$yyy’ is converted to ‘xxx’
(optional, check box if you want to use this). If checked, allows
for linkage of consumed foods coded at a lower hierarchical level
to foods with measured concentrations at a higher hierarchical
level e.g. consumed is Apple (code PF$Apple) –> measured is
Pome Fruit (code PF). Note: food codes are split on ‘$’.
Measurements of substances on food are available at a less
detailed food coding level than consumption data. MCRA allows
to use the concentration data of a supertype for all underlying
food codes. If successful, restart at step 1.

Step 6: allow conversion using
default processing factors

Remove processing part. If unchecked, no default processing
factors are assumed, default is ‘Use default processing factors’. If
successful, restart at step 1.

Include foods without
occurence data but with
specified maximum residue
limits

Include foods without concentration data but for which for which
concentration limits such as MRLs are defined (default: no).
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Calculation of food conversions

Food conversions are computed recursively, starting with a food-as-eaten and following a path to ingredients (food
recipes), unprocessed foods (processing), super/sup-type foods, etc. until either arriving at a food-as-measured (com-
monly the raw primary commodities) or concluding that the path does not lead to a food-as-measured.

• Food conversions calculation

Inputs used: Consumptions Foods as measured Processing factors Food recipes Market shares Food extrapolations
Total diet study sample compositions Active substances

Settings used
• Calculation Settings

2.4.7 Human monitoring analysis

Humanmonitoring analysis compares observed humanmonitoring data with predictionsmade for the same population
of individuals from dietary survey data, concentration data and (optionally) non-dietary exposure data.
This module has as primary entities: Populations Substances

Human monitoring analysis calculation

Human monitoring analysis computes internal substance concentration estimates based on provided human moni-
toring data. These estimates are specified at the level of long term average concentrations for individuals in case
of chronic assessments, or the average concentrations for individual-days in vase of acute assessments. The internal
concentrations are computed independently for each substance, compartment, and sampling type.
The main steps for computing the human monitoring concentration estimates are:

1. Imputation of non-detects.
2. Imputation of missing values.
3. Calculation of individual concentrations (chronic) or individual day concentrations (acute).
4. Comparison of monitoring versus modelled exposures by substance and compartment (optional).

Imputation of non-detects

Similar to concentrations measurements in food, human monitoring measurements can also contain measurements
below the limit of reporting and similar to concentrations modelling in foods, human monitoring analysis needs to
address these non-detects and replace themwith imputed concentration values. For this, two approaches are available:

1. Replace non-detects by zero.
2. Replace non-detects by a factor times LOR, in which the factor is set between zero and one.

Imputation of missing values

Concentration measurements may be missing. The following imputation methods are available for imputation of
missing values:

1. Replace missing values by zero.
2. For each substance, sampling type, and compartment, replace missing values by a random other sample of this

substance, sampling type, and compartment.

136 Chapter 2. Modules



MCRA Documentation, Release 9.0

Note: For the second imputation method, more refined methods could be useful as well. E.g., when for a given day
multiple samples are available, of which one is missing, then it may alternatively be sensible to leave this sample out
when computing an average exposure. Also, when samples have been taken at different times during the day, it may
be better to impute missing records using samples approximately from the same time-slot.

Calculation of acute human monitoring concentrations

For acute assessments, the monitoring concentrations are computed for each substance, compartment, and sampling
type as average individual-day concentrations. That is, for a given substance, compartment, and sampling type, the
acute individual-day concentration 𝑐𝑖𝑗 for individual 𝑖 on day 𝑗 is:

𝑐𝑖𝑗 =
∑𝑛samples

𝑘=1 𝑐𝑖𝑗𝑘 ⋅ sg𝑖𝑗𝑘
𝑛samples

,

where 𝑛samples is the number of samples available for individual 𝑖 on day 𝑗, and 𝑐𝑖𝑗𝑘 and sg𝑖𝑗𝑘 denote the concen-
tration and specific gravity, respectively, of the 𝑘-th sample of the individual day.

Note: Note that currently, the acute concentrations are computed as mean concentrations when multiple samples
are available for one day. In acute scenarios, one may be more interested in peak concentrations. I.e., the highest
concentration of a day.

Calculation of chronic human monitoring concentrations

Note: The implementation for chronic is not yet available. Below is a description of the forseen implementation.

For chronic assessments, the monitoring concentrations are computed as the avarage monitoring concentrations of
multiple individual-days for each substance, compartment, and sampling type. That is, for a given substance, com-
partment, and sampling type, the chronic concentration 𝑐𝑖 for individual 𝑖 is:

𝑐𝑖 =
∑𝑛days

𝑗=1 𝑐𝑖𝑗
𝑛days

,

where 𝑛days is the number of days that individual 𝑖 was monitored, and 𝑐𝑖𝑗 denotes the average monitoring concen-
tration of individual 𝑖 on day 𝑗.

Compare measured and modelled exposures

An optional step of the human monitoring analysis is to compare the monitoring concentrations with modelled ex-
posures that were obtained from dietary (and optionally non-dietary) exposure assessments. This comparison may
provide insight in the coherence between modelled exposures and the measured reality. A requirement is that both
monitoring data and dietary/non-dietary use data is available for the same individuals or individual-days. An example
of a graphical output of these comparison is given in Figure 2.34.

Human monitoring analysis settings
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Figure 2.34: Measured exposures from monitoring versus modelled exposures

Calculation settings

Table 2.115: Calculation settings for module Human monitoring analysis.
Name Description
Non-detects handling method Method for dealing with non-detects samples in human

monitoring data.
Fraction of LOR Factor for replacing non-detects with factor times LOR.
Missing value imputation
method

Imputation method for missing values.

Correlate monitoring with
modelled exposures

Correlate monitoring with modelled exposures.

Calculation of human monitoring analysis

Human monitoring analysis calculations comprise two parts. The first part is to compute estimates of the human
monitoring concentrations based on the human monitoring data. The second part, which is optional, is to relate the
human monitoring concentrations to modelled concentrations from exposure assessments.

• Human monitoring analysis calculation

Inputs used: Human monitoring data Exposures
Settings used

• Calculation Settings
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2.4.8 Human monitoring data

Human monitoring data quantify substance concentrations found in humans collected in human monitoring surveys.
This module has as primary entities: Substances
Output of this module is used by: Human monitoring analysis

Human monitoring data data formats

Data are provided on the survey, the individuals in the survey, the samples taken, the analyses performed, the analytical
methods used, the properties for substances analysed, and the concentrations found.
Data are provided in the following relational tables:

• Human monitoring surveys
• Human monitoring individuals
• Human monitoring samples
• Human monitoring sample analyses
• Sample concentrations
• Analytical methods
• Analytical method properties for substances

Human monitoring samples

Suggested table definitions for human monitoring data.

Human monitoring surveys

Contains the survey definitions.
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Table 2.116: Table definition for HumanMonitoringSurveys.
Name Type Description Aliases Required
idSurvey AlphaNumeric(50) Unique identification code of

the survey.
idSurvey Yes

Name AlphaNumeric(100) Name of the survey. Name No
Description AlphaNumeric(200) Description of the survey. Description No
Location AlphaNumeric(50) The location or country where

survey is held. It is
recommended to use ISO
Alpha-2 country codes.

Location,
Country

No

BodyWeight-
Unit

AlphaNumeric(50) The unit of bodyweight of the
individuals of the survey: kg
(default) or g.

BodyWeight-
Unit,
UnitBody-
Weight,
WeightIn

No

AgeUnit AlphaNumeric(50) The unit of age, i.e., year or
month.

UnitAge, agein,
AgeUnit

No

StartDate DateTime The starting date of the
survey.

StartDate No

EndDate DateTime The end date of the survey. EndDate No
NumberOf-
SurveyDays

Integer The number of days each
individual participated in the
survey.

NumberOf-
SurveyDays,
NDaysInSurvey

Yes

idPopulation AlphaNumeric(50) Unique identification code of
the population.

IdPopulation,
PopulationId

No

Table aliases: HumanMonitoringSurveys, HumanMonitoringSurvey.

Human monitoring individuals

The individuals of a survey are recorded in the individuals table.
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Table 2.117: Table definition for HumanMonitoringIndividuals.
Name Type Description Aliases Required
idIndividual AlphaNumeric(50) Unique identification code of

the individual.
idIndividual,
IndividualId,
Individual, Id

Yes

idSurvey AlphaNumeric(50) The identification code / short
name of survey.

idSurvey Yes

BodyWeight Numeric The body weight of the
individual.

BodyWeight,
Weight

Yes

Sampling-
Weight

Numeric The sampling weight for an
individual (default = 1).

SamplingWeight No

NumberOf-
DaysInSurvey

Integer The number of days the
individual participated in the
survey.

NumberOf-
SurveyDays,
NumberOfDays-
InSurvey,
DaysInSurvey,
NDaysInSurvey

No

Age Numeric The age of the individual. Age No
Gender AlphaNumeric(50) The gender of the individual.

Recommendation: use the
codes Male/Female for coding
the gender.

Gender No

Other individual
properties

Other individual properties
can be added just like the
fields age and gender. These
properties are automatically
parsed as co-factors or
co-variables.

No

Table aliases: HumanMonitoringIndividuals, HumanMonitoringIndividual.

Human monitoring samples

Contains the samples taken during the study.
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Table 2.118: Table definition for HumanMonitoringSamples.
Name Type Description Aliases Required
idSample AlphaNumeric(50) Unique identification code of

the monitoring sample.
idSample,
Sample

Yes

idIndividual AlphaNumeric(50) Unique identification code of
the individual.

idIndividual,
IndividualId,
Individual, Id

Yes

DateSampling DateTime(50) Date of sampling. DateSampling,
DateOf-
Sampling,
SamplingDate

No

DayOfSurvey AlphaNumeric(50) Identification code of the day
of measurement.

Day, idDay,
DayId,
DayOfSurvey

Yes

TimeOf-
Sampling

AlphaNumeric(50) Identification code of the time
of sampling.

TimeOf-
Sampling,
SamplingTime,
TimeSampling

No

SampleType AlphaNumeric(50) Type of sample (e.g., pooled,
24h urine, spot urine, serum
from blood, etc.).

SampleType,
SamplingType

No

Compartment AlphaNumeric(50) If applicable, the measured
compartment of the human
body (e.g., blood, urine).
When specified, the
measurements are considered
at the level of internal doses.

Compartment No

ExposureRoute AlphaNumeric(50) If applicable, the measured
exposure route, e.g., dermal
(in case of skin wipes). When
specified, the measurements
are considered at the level of
external doses.

ExposureRoute No

SpecificGravity Numeric Specific gravity of the
measured person for this
particular sample.

SpecificGrafity,
SpecificGravity

No

SpecificGravity-
Correction-
Factor

Numeric Specific gravity of the
measured person for this
particular sample.

SpecificGravity-
Correction-
Factor

No

Table aliases: HumanMonitoringSamples, HumanMonitoringSample.

Human monitoring sample analyses

Contains the measurements of the samples of human monitoring studies.
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Table 2.119: Table definition for HumanMonitoringSampleAnalyses.
Name Type Description Aliases Required
idSample-
Analysis

AlphaNumeric(50) Unique identification code of
the sample analysis.

idSample-
Analysis,
SampleAnalysis

Yes

idSample AlphaNumeric(50) Code of the measured
monitoring sample.

idSample,
Sample

Yes

idAnalytical-
Method

AlphaNumeric(50) The code of method of
analysis.

idAnalytical-
Method,
Analytical-
MethodName,
Analytical-
MethodId

Yes

AnalysisDate AlphaNumeric(50) Date of analysis. AnalysisDate,
DateAnalysis

No

Substance
concentration(s)

AlphaNumeric(100) One or more columns with
the measured concentrations
of the substances in the unit
as specified by the analytical
method. The column name(s)
should match the substance
codes of the substances
measured by the analytical
methods. Empty fields for
substances that should have
been measured by the
analytical method are
considered to be non-detects
with measurement values
below LOR.

Yes

Table aliases: HumanMonitoringSampleAnalyses, HumanMonitoringSampleAnalysis.

Sample concentrations

The positive concentration values for substances from analysis in the unit specified in table human monitoring sample
analyses. Non-detects (i.e. results ‘less than LOR’) are not included, their existence can be inferred from the tables
AnalysisSamples and AnalyticalMethodSubstances, and the LOR itself from the analytical method.

Table 2.120: Table definition for HumanMonitoringSampleConcentra-
tions.

Name Type Description Aliases Required
idAnalysis-
Sample

AlphaNumeric(50) The identification number of
the analysed sample.

idAnalysis-
Sample,
AnalysisSample-
Id

Yes

idSubstance AlphaNumeric(50) The substance code. idSubstance,
SubstanceId,
Substance

Yes

Concentration Numeric The measured concentration. Concentration Yes

Table aliases: HumanMonitoringSampleConcentrations, HumanMonitoringSampleConcentration.
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Analytical methods

The analytical methods used for analyzing the samples are recorded in the analytical methods table. Each analytical
method should have a unique identification code (idAnalyticalMethod). The description field may be used for a more
detailed description of the analytical method. The records of this table should be linked to one or more analytical
method substance properties table, which record the substances that are measured by this method (and their limits of
reporting).

Table 2.121: Table definition for AnalyticalMethods.
Name Type Description Aliases Required
idAnalytical-
Method

AlphaNumeric(50) The code for the method of
analysis.

idAnalytical-
Method,
Analytical-
MethodId,
Analytical-
MethodName,
Id

Yes

Description AlphaNumeric(200) Additional description of
method of analysis.

Description No

Table aliases: AnalyticalMethod, AnalyticalMethods.

Analytical method properties for substances

Table 2.122: Table definition for AnalyticalMethodCompounds.
Name Type Description Aliases Required
idAnalytical-
Method

AlphaNumeric(50) The code of method of
analysis.

idAnalytical-
Method,
Analytical-
MethodName,
Analytical-
MethodId

Yes

idSubstance AlphaNumeric(50) The substance code. idSubstance,
SubstanceId,
Substance

Yes

LOR Numeric The limit of reporting (LOR).
In MCRA, LOR just means
the limit below which no
quantitative result has been
reported. Depending on a
laboratory’s format of
reporting, LOR may be a
limit of detection (LOD), a
limit of quantification (LOQ)
or another limit.

LOR Yes

Concentration-
Unit

AlphaNumeric(50) The code of the unit as used
for substance concentration
data. Allowed code: kg/kg or
kilogram/kilogram; g/kg or
gram/kilogram; mg/kg or
milligram/kilogram (default);
µg/kg or
microgram/kilogram; ng/kg
or nanogram/kilogram; pg/kg
or picogram/kilogram.

Concentration-
Unit, Units,
Unit

No
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Table aliases: AnalyticalMethodSubstances, AnalyticalMethodSubstance, AnalyticalMethodCompounds,
AnalyticalMethodCompound.

Human monitoring data settings

Selection settings

Table 2.123: Selection settings for module Human monitoring data.
Name Description
Surveys The surveys that should be included in the action.
Sampling methods The sampling methods that should be included in the action.

Human monitoring data as data

Data are provided in the form of surveys consisting of individuals from which the human monitoring samples taken.
Substance concentration measurements are linked to analyses performed on the human monitoring samples. The data
should also include information about the analytical methods that were used used.

• Human monitoring data data formats

2.4.9 Non-dietary exposures

Non-dietary exposures are the amounts of substances to which individuals in a population are exposed via any of three
non-dietary routes: dermal, inhalation or oral, per day. Non-dietary exposures can be used for computing aggregate
exposure distributions from both dietary and non-dietary routes of exposure. Depending on the exposure type, non-
dietary exposures can be short-term/acute exposures and then contain exposures for individual-days, or they can be
long-term/chronic exposures, in which case they represent the average exposure per day over an unspecified longer
time period. Examples are presented as case studies in Kennedy et al. ([28], [26], [27], [29]) and R code to generate
these examples is available for general use.
Datasets are typically generated by external programs, e.g. Browse, Bream2 or PACEM. The Browse and Bream2
models both simulate distributions of potential exposure of residents and bystanders to pesticides sprayed on crops.
Probability distributions are included to quantify variations in input parameters representing conditions during a spray
event. PACEM is a probabilistic exposuremodel for substances present in consumer products. Browse was an EUFP7
project (https://secure.fera.defra.gov.uk/browse/software), that in addition to bystanders and residents from boom-
sprayers includes various arable and orchard scenarios. It includes dermal, oral and inhalation routes of exposure
and can generate exposure files in the correct format for MCRA non-dietary exposure. The underlying simulation of
dermal spray deposits on bystanders and residents was taken from Bream, although Browse includes post-processing
to model indirect exposures, multiple routes and long-term exposure [29]. Volatilisation is also included through the
PEARL-OPS model [44] to account for inhalation of vapours. Bream2 is an updated version of the original Bream
model [28] and software is available online (http://www.ssau.co.uk/bream2-calculator). Results from Bream had
been used as part of EFSA guidance on bystander and resident exposure. Bream2 was recently shown to produce
more realistic exposure distributions, when compared to measured dermal exposure [10].
This module has as primary entities: Populations Substances
Output of this module is used by: Exposures

Non-dietary exposures data formats

Non-dietary exposures may be specified for multiple routes of exposure (dermal, oral and inhalation), for multiple
substances, and for multiple exposure sources. Also, they can be provided as single deterministic exposure levels
or as probabilistic exposure estimates and it is possible, but not mandatory, to specify uncertainty. The non-dietary
exposures may be short term (acute) or longer term averages (chronic), and the user must ensure to supply appropriate
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non-dietary data for the type of exposure assessment of interest. For chronic assessments this means the non-dietary
exposure is averaged over an appropriate time interval.
Non-dietary exposures are defined by non-dietary surveys to which dietary exposures are linked. For these surveys,
individual properties can be specified to define non-dietary exposures for particular sub-groups of the population (e.g.,
specific age groups, or a specific gender). For each non-dietary survey a percentage of the target population that is
not exposed from this source can be specified by means of a percentage. Uncertainy about non-dietary exposures can
be specified by specifying multiple records for each individual in an additional table.
The use of multiple surveys can be used when multiple sources are relevant. For example, when modelling individuals
taking part in various activities involving pesticide use or incidental exposures as a resident. Each non-dietary source
is characterised in a particular user-selected or user-supplied non-dietary survey. By default, exposures from separate
non-dietary surveys (sources) are considered to be independent events, but as explained below correlations between
substances and/or activity types per individual can be represented if generated prior to uploading to MCRA. When
including multiple non-dietary surveys it is possible to supply some with uncertainty/variability and others without
variability/uncertainty according to the requirements and data availability.
When the user supplies probabilistic non-dietary exposure estimates (i.e., there is a distribution for the non-dietary
exposure rather than a single nominal value), then this information will be propagated as part of the exposure assess-
ment. Distributions may be included to represent variability, uncertainty or both, and in these cases the aggregate
exposure estimates are reported with variability and/or uncertainty as appropriate. Multiple (uncertain) values from
the non-dietary exposure distribution may be supplied per individual and per substance.
Exposures within a non-dietary survey may be expressed as correlated or independent for the different compounds.
For example, if the exposures are amixture of substances in a known ratio (e.g. from a specific tankmix of pesticides),
or if exposure to one substance strongly implies that exposure to another is likely, these relationships may be included
in the non-dietary data supplied by the user. Inference for the matched-case scenario with uncertainty analysis can
use exposure sets. These are specific sets of exposures defined for each individual and in any uncertainty iteration
an individual will receive exactly one of the exposure sets for that individual. Alternatively, independence may be
represented by generating sets drawn from independent distributions when generating these tables.

Non-dietary exposures

Non-dietary exposure data is provided per non-dietary surveys. Each non-survey has some general information about
the exposed population and the origin of the non-dietary exposure data. Also, a number of properties, such as specific
age groups, can be specified for a survey. To each non-dietary survey, non-dietary exposures can be linked. These
exposures may originate from dermal, oral and/or inhalatory exposure routes.

Non-dietary surveys

This table provides detail about non-dietary surveys (source of non-dietary exposure): description, location, date and
unit of exposure).
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Table 2.124: Table definition for NonDietarySurveys.
Name Type Description Aliases Required
idNonDietary-
Survey

AlphaNumeric(50) The survey identification
number.

idNonDietary-
Survey

Yes

Description AlphaNumeric(200) Description of non-dietary
survey.

Description No

Location AlphaNumeric(50) The location of survey. Location No
Date DateTime The date of survey. Date No
NonDietary-
IntakeUnit

AlphaNumeric(50) The unit of the non-dietary
exposure.

Unit,
NonDietary-
IntakeUnit,
NonDietary-
ExposureUnit

Yes

Percentage-
Zeros

Numeric The proportion zeros,
specified as a percentage (%).

PercentageZeros No

idPopulation AlphaNumeric(50) Unique identification code of
the population.

IdPopulation,
PopulationId

No

Table aliases: NonDietarySurveys, NonDietarySurvey.

Non-dietary survey properties

This table specifies demographic properties that apply to the individuals in the surveys. These properties could be
used to link the individuals of a non-dietary survey with individuals from dietary surveys. That is, if demographic
criteria are defined, only those individuals in the dietary survey that meet these criteria will be assigned non-dietary
exposures. This table is not relevant when matching is switched on (i.e., when individuals are matched based on
individual id).
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Table 2.125: Table definition for NonDietarySurveyProperties.
Name Type Description Aliases Required
Individual-
PropertyName

AlphaNumeric(50) Name of demographic criteria
for non-dietary exposures in a
particular survey e.g. age,
gender, height (must
correspond to a column name
in Individuals table).

Individual-
PropertyName

Yes

idNonDietary-
Survey

AlphaNumeric(50) The code of survey (must
correspond to values in id
column of the non-dietary
surveys table).

idNonDietary-
Survey

Yes

Individual-
PropertyText-
Value

AlphaNumeric(50) Text value of the property e.g.
male or female, smoker or
non-smoker.

Individual-
PropertyText-
Value

No

Individual-
Property-
DoubleValue-
Min

Numeric Inclusive lower bound value
of the property. E.g., a value
of “18” for an individual
property name called Age
would mean that only
individuals aged 18 and above
receive the non-dietary
exposures.

Individual-
PropertyDouble-
ValueMin

No

Individual-
Property-
DoubleValue-
Max

Numeric Inclusive upper bound value
of property e.g. a value of
“65” for an
IndividualPropertyName
called Age would mean that
only individuals aged 65 and
below receive the non-dietary
exposures.

Individual-
PropertyDouble-
ValueMax

No

Table aliases: NonDietarySurveyProperties, NonDietarySurveyProperty.

Non-dietary exposures

This table defines nominal non-dietary exposure values (such as means) for individuals within the non-dietary surveys.
It can also be used to specify non-dietary exposures for individuals within the food surveys. Each exposure comprises
a non-dietary survey (source of exposure); a string identifying an individual, which may or may not correspond to
the ID of an individual in a food survey; a substance; and dermal, oral and inhalation exposure values. Exposures are
assumed to be external doses.
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Table 2.126: Table definition for NonDietaryExposures.
Name Type Description Aliases Required
idIndividual AlphaNumeric(50) Non-dietary individual

identification number. This id
may 1) match with the
individual ids of the dietary
survey (dietary exposures
matched to food survey
individuals), 2) not match
with the individual ids of the
dietary survey (unmatched
individuals), or contain a
default exposure (indicated by
idIndividual = ‘General’)
linking the dietary exposures
to individuals based on the
demographic criteria defined
in the non-dietary survey
properties table.

idIndividual Yes

idNonDietary-
Survey

AlphaNumeric(50) The code of the survey (must
correspond to values in id
column of non-dietary surveys
table).

idNonDietary-
Survey

Yes

idSubstance AlphaNumeric(50) The substance code. idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Dermal Numeric The dermal (non-dietary)
exposure value.

Dermal No

Oral Numeric The oral (non-dietary)
exposure value.

Oral No

Inhalation Numeric The inhalation (non-dietary)
exposure value.

Inhalation No

Table aliases: NonDietaryExposures, NonDietaryExposure.

Non-dietary exposure uncertainty records

This table may be used to supply uncertainty sets of multiple (uncertain) non-dietary exposure values for individuals
within the non-dietary surveys. Multiple non-dietary values are generated by probabilistic exposure calculations i.e.
when there is a distribution for the non-dietary exposure rather than a single nominal value. If this table is supplied,
aggregate exposure estimates will be reported with uncertainty using the uncertainty set approach. Each exposure set
comprises a non-dietary survey (source of exposure); an individual ID; a substance; and dermal, oral and inhalation
exposure values. In addition, the id column is used to define the uncertainty set. Summarizing, an uncertainty set is
identified by column id and contains all exposure sets defined for each individual. In each uncertainty run (outer loop)
an uncertainty set is sampled and in each iteration (inner loop) nondietary individuals are sampled from this set.
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Table 2.127: Table definition for NonDietaryExposuresUncertain.
Name Type Description Aliases Required
idIndividual AlphaNumeric(50) Non-dietary individual

identification number. The
idIndividual value may
correspond to an id in the
Individuals table (dietary
exposures matched to food
survey individuals), may not
correspond to an id in the
Individuals table (unmatched
individuals), or may contain a
default exposure (indicated by
idIndividual = ‘General’ -
demographic criteria for the
assignment of exposures are
defined in the
NonDietarySurveyProperties
table). For matching to occur,
the user will need to tick the
option to ‘match specific
dietary survey individuals’ in
the user-interface. The
software will then assign
non-dietary exposures to the
dietary individuals according
to the values in this column.
Any idIndividual values that
do not correspond to
individuals in the food survey
will be ignored, unless a value
‘General’ is specified. Then
the individual should meet the
demographic criteria as
defined in the
NonDietarySurveyProperties
table. If this box is left
unticked, the non-dietary
exposures will be randomly
allocated to the dietary
population provided they meet
the demographic criteria.

idIndividual Yes

idNonDietary-
Survey

AlphaNumeric(50) code of survey (must
correspond to values in id
column of
NonDietarySurveys table)

idNonDietary-
Survey

Yes

idCompound AlphaNumeric(50) Substance code (must
correspond to values in id
column of Substances table).

idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

id AlphaNumeric(50) Uncertainty set identification
number.

id Yes

Dermal Numeric Dermal non-dietary exposure
value.

Dermal No

Oral Numeric Oral non-dietary exposure
value.

Oral No

Inhalation Numeric Inhalation (non-dietary)
exposure value.

Inhalation No
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Table aliases: NonDietaryExposuresUncertain, NonDietaryExposureUncertain.

Non-dietary exposures settings

Uncertainty settings

Table 2.128: Uncertainty settings for module Non-dietary exposures.
Name Description
Resample non-dietary
exposures

Specifies whether non-dietary exposures are resampled. Note that
non-dietary uncertainty is only ignored when individual
uncertainty is set to false (uncheck box: do NOT resample
individuals).

Non-dietary exposures uncertainty

In an aggregate exposure assessment, dietary and nondietary data are combined into an aggregate exposure distribu-
tion. The nondietary data are supplied in table NonDietaryExposures. In an uncertainty analysis, MCRA provides
two ways to assess the uncertainty:

1. the uncertainty set approach
2. the bootstrap algorithm.

When table NonDietaryExposuresUncertain is not supplied, the nondietary data in table NonDietaryExposures
is resampled and the bootstrapped sets are used in the uncertainty run. More precisely, in each outer loop of the
2D Monte Carlo, within each nondietary survey (multiple surveys may be supplied), the nondietary individuals are
resampled. Each individual represents a nondietary exposure set containing dermal and/or oral and/or inhalation
exposure values for multiple substances. Bootstrapping is the default behaviour when the NonDietaryExposure-
sUncertain table is missing. When uncertainty distributions supplied in this table represent sampling uncertainty
(individual exposure sets are repeatedly sampled using the same nondietary exposure generator without changing the
input parameters), then bootstrapping the data performs equally well and is more efficient.

Non-dietary exposures as data

Non-dietary exposures are collected in non-dietary surveys. Data may be specified on population level or individual
level, and may or may not include variability and uncertainty.

• Non-dietary exposures data formats

Inputs used: Active substances

2.5 Hazard modules

Hazard data exist at two levels: at a lower level dose response data give responses measured in test systems from doses
of active substances. Such data can be modellled with dose response models.
At a higher level responses can be linked to effects, optionally via AOP networks, using effect representations. If
benchmark responses (BMRs) have been specified, dose response models can calculate Benchmark Doses (BMDs),
which are the preferred Points of departure in hazard assessments. In addition, or alternatively, external points of
departure can be specified for active substances and effects.
BMDs from dose response models and/or other points of departure can be converted to hazard characterisations at the
intended level (external or internal dose, without or with safety factors), using kinetic models, inter-species conversions
and/or intra-species factors. Finally, hazard characterisations can be translated to relative potency factors.
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2.5.1 Active substances

Active substances are the substances that may lead with non-zero probability (P (AG)>0) to a specific health effect
(adverse outcome). In the simplest case, all substances in the scope of the action will form one assessment group
(AG) of active substances. In more advanced cases, the list of active substances is derived from possibly multiple
assessment group memberships, which are scores for substances that determine whether a substance is included (score
> 0) or excluded (score = 0) in the set of active substances. Substances with membership 0 are excluded from the
list of active substances. Memberships scores between 0 and 1 are treated as probabilities of being in the set of
active substances. Assessment group memberships can be either specified directly as data or derived from QSAR
membership models, molecular docking models, or from availability of points of departure.
This module has as primary entities: Effects Substances
Output of this module is used by: Concentrations Occurrence patterns Substance conversions Non-dietary exposures
Kinetic models Relative potency factors Hazard characterisations Food conversions Dietary exposures with screening
Dietary exposures Exposures

Active substances data formats

Active substances as data have to be specified via assessment group (AG) memberships in an AGmembership model.
For each effect one or more AG membership models can be available, one of which should be chosen in assessments.
The AG memberships can be crisp, i.e. a positive list of active substances (with default memberships 1, although it
is also allowed to include the negative memberships with membership 0 explicitly) or probabilistic ( 0 ≤ 𝑃 ≤ 1 ).

Assessment group membership models

Assessment group membership models contain substance membership definitions for a given (health) effect. This data
is described using two tables: the assessment group membership models table and the assessment group memberships
table. The groups for a specified health effect are defined in the assessment group membership models table. The
assessment group memberships table describes the substance memberships (or membership probabilities) in each
group.

Assessment group membership models

This table contains the definitions of the assessment group membership models. Each model contains a id, name, an
optional description, and refers to its related health effect.
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Table 2.129: Table definition for AssessmentGroupMembershipModels.
Name Type Description Aliases Required
id AlphaNumeric(50) The unique identification code

of the assessment group
membership model.

id, idModel,
Model,
idAssessment-
GroupModel,
Assessment-
GroupModel,
idGroup-
Membership-
Model,
Group-
Membership-
Model

Yes

Name AlphaNumeric(100) The name of the assessment
group membership model.

Name No

Description AlphaNumeric(200) Description of the assessment
group membership model.

Description No

idEffect AlphaNumeric(50) The effect code. idEffect,
EffectId, Effect

Yes

Accuracy Numeric If applicable, the accuracy of
the assessment group
membership model
memberships.

Accuracy No

Sensitivity Numeric If applicable, the sensitivity of
the assessment group
membership model.

Sensitivity No

Specificity Numeric If applicable, the specificity of
the assessment group
membership model.

Specificity No

Reference AlphaNumeric(200) External reference(s) to
sources containing more
information about the
assessment group model.

References No

Table aliases: AssessmentGroupMembershipModels, AssessmentGroupMembershipModel.

Assessment group memberships

Substances can belong to an assessment group with certainty (probability 1), or the membership can be uncertain.
This table allows to specify membership probabilities for assessment group membership models. The probability
should be a value between zero and one. For example, set to 1 or 0, or prior probabilities, or probabilities or 0/1
values estimated from QSAR, from Molecular Docking or from expert elicitation. The table can contain prior or
posterior memberships. Default membership are specified with an empty idSubstance field.
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Table 2.130: Table definition for AssessmentGroupMemberships.
Name Type Description Aliases Required
idGroup-
Membership-
Model

AlphaNumeric(50) The id of the assessment
group memberships model or
source.

Model, idModel,
idAssessment-
Group-
Membership-
Model,
Assessment-
Group-
Membership-
Model,
idGroup-
Membership-
Model,
Group-
Membership-
Model,
idGroup

Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Group-
Membership

Numeric Probability of the substance
for belonging to the
assessment group for the
effect. If omitted, the default
is 1, i.e. certain membership.

Group-
Membership,
Membership,
Membership-
Probability,
Probability,
Assessment-
Group-
Membership

Yes

Table aliases: AssessmentGroupMemberships, AssessmentGroupMembership.

Active substances calculation

Depending on the model settings, the set of active substances for a specified effect can be computed in several ways:
1. From the list of substances with available points of departure (POD) data for the specified effect. If there is a

POD, then the substance is considered an active substance, with membership 1. If not, the membership is 0,
and the substance is excluded from the list of active substances.

2. From one or more in-silico (QSAR and/or molecular docking) models. The results of the in-silico models
should be provided as QSAR membership models data and/or molecular docking models data. Binding energies
from molecular docing models are first translated to crips memberships using a threshold value. The results
from multiple in-silico models can be combined in any of four membership calculation methods:
1. (crisp, any) the substance is considered an active substance if any in-silico model indicates activity;
2. (crisp, majority) the substance is considered an active substance if the majority of in-silico models indi-

cates activity;
3. (probabilistic, ratio) the membership probability is the fraction of in-silico models that indicate activity;
4. (probabilistic, Bayesian) the membership probability is calculated using a Bayesian model according to

Kennedy et al. [30] and a specified prior probability (which is by default 0.5).
For substances within the scope of the assessment but without in-silico data, the default is to omit them
in the AG. There is an option however to include such substances with a default membership probability.
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3. From a combination of 1 and 2, using either the union (OR) method or the intersection (AND method) of
results.

Active substances settings

Calculation settings

Table 2.131: Calculation settings for module Active substances.
Name Description
Filter by certain assessment
group membership

Filter substances by certain assessment group membership.

Filter by possible assessment
group membership

Filter substances by possible assessment group membership.

Derive memberships from
POD presence

Determine assessment group membership based on
presence/absence of points of departure.

Restrict active substances to
substances with available
hazard characterisations

Determine assessment group membership based on
presence/absence of hazard characterisations.

Derive memberships from
QSAR membership data

Specifies whether QSAR membership data is used for computing
the assessment group memberships.

Derive memberships from
molecular docking data

Specifies whether molecular docking data is used for computing
the assessment group memberhips.

Include substances without
membership information

For non-probabilistic methods: specifies whether substances for
which no membership information is available in the specified
inputs should be included in the assessment group.

Combination method
memberships from available
PODs and in-silico data

Specifies whether to take the intersection or the union of the set of
substances with available PoDs and the set of substances with
positive/probable (in-silico) membership score.

Membership calculation
method

Calculation method for computing assessment group
memberships: majority/any (crisp methods), ratio/Bayesian
(probabilistic methods)

Default/prior membership
probability

Default substance membership probability for which no
membership information is available in the specified inputs. Prior
probability for Bayesian method.

Uncertainty settings

Table 2.132: Uncertainty settings for module Active substances.
Name Description
Resample assessment group
memberships

Specifies whether assessment group memberships of substances
should be resampled using the assessment group membership
probabilities.

Active substances as data

When provided as data, in the form of assessment group memberships, the active substances are derived from the
specified memberships.

• Active substances data formats

Inputs used: AOP networks Points of departure Hazard characterisations
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Calculation of active substances

Active substances and assessment group memberships may be computed from PoD presence of in-silico data.
• Active substances calculation

Inputs used: Molecular docking models QSAR membership models
Settings used

• Calculation Settings

2.5.2 AOP networks

Effects can be related to each other using the toxicological concept of adverse outcome pathways (AOPs) and adverse
outcome pathway networks (see https://aopwiki.org). Adverse Outcome Pathway (AOP) Networks specify how bi-
ological events (effects) can lead to an adverse outcome (AO) in a qualitative way through relations of upstream and
downstream key events (KEs), starting from molecular initiating events (MIEs). Using AOPs, the adverse outcome
(AO), e.g., liver steatosis, is linked to key events (KEs), e.g., triglyceride accumulation in the liver, and to molecular
initialing events (MIEs), e.g., PPAR-alpha receptor antagonism. In general, multiple AOPs may lead to the same
AO, and therefore AOP networks can be identified.
This module has as primary entities: Effects
Output of this module is used by: QSAR membership models Molecular docking models Active substances Relative
potency factors Hazard characterisations Points of departure Effect representations

AOP networks data formats

AOP networks

AOP networks are described using two tables: the AOP networks table, and the effect relations table. The AOP
networks table records the ids, names, descriptions, and other metadata of the AOP networks. The effect relations
table describes the effects and effect relations (i.e., upstream and downstream key event relations) that are part of the
AOP network.

AOP networks

Data format for specification of adverse outcome pathway (AOP) networks.
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Table 2.133: Table definition for AdverseOutcomePathwayNetworks.
Name Type Description Aliases Required
idAdverse-
Outcome-
Pathway-
Network

AlphaNumeric(50) Unique identification code of
the AOP network.

idAOPN,
idAOPNetwork,
AOPN,
AOPNetwork,
Id

Yes

Name AlphaNumeric(100) Name of the AOP network. Name No
Description AlphaNumeric(200) Additional description or label

of the AOP network.
Description No

Reference AlphaNumeric(200) External reference(s) to
sources containing more
information about the AOP
network. E.g., the AOP wiki,
and the associated AOP wiki
Ids.

Reference,
References

No

idAdverse-
Outcome

AlphaNumeric(50) The identification code of the
effect representing the adverse
outcome of this AOP
network.

idAdverse-
Outcome, idAO,
idEffect,
Adverse-
Outcome

Yes

RiskType AlphaNumeric(100) The risk type of the adverse
outcome.

RiskType No

Table aliases: AOPNetworks, AOPNetwork.

Effect relations

Dataformat for specification of the effect (key event) relationships of adverse outcome pathway (AOP) networks.

Table 2.134: Table definition for EffectRelations.
Name Type Description Aliases Required
idAdverse-
Outcome-
Pathway-
Network

AlphaNumeric(50) Identification code of the
AOP network for which this
link is defined.

idAdverse-
Outcome-
Pathway-
Network,
idAOPN,
idAOPNetwork,
AOPN,
AOPNetwork

Yes

idDownstream-
KeyEvent

AlphaNumeric(50) Identification code of the
(triggered) effect of this
relationship.

idDownstream-
KeyEvent,
idEffect,
idKeyEvent,
Effect, KeyEvent

Yes

idUpstream-
KeyEvent

AlphaNumeric(50) Identification code of the
triggering effect of this
relationship.

idTrigger,
idUpstreamKey-
Event,
Trigger

Yes

Reference AlphaNumeric(200) External reference(s) to
sources containing more
information about the effect
(key event) relationships.

Reference,
References

No

Table aliases: EffectRelations, EffectRelation, EffectRelationships, EffectRelationship, KeyEventRelationships,
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KeyEventRelationship.

AOP networks settings

Selection settings

Table 2.135: Selection settings for module AOP networks.
Name Description
AOP Network The AOP networks of interest.
Restrict AOP network by focal
upstream event

Restrict the AOP network to a specific sub-network, containing
only the AOPs that include both the focal key event (KE) defined
here (which must be upstream of the AO) and the focal effect
(adverse outcome, AO)

Focal upstream event The focal key event used for restricting the AOP network to a
specific sub-network of interest.

AOP networks as data

AOP networks can only be provided as data in the form of network definitions containing effect relations (key-event
relationships) collections.

• AOP networks data formats

2.5.3 Dose response data

Dose response data are data on response values of test systems at specified doses of substances (or mixtures of
substances) from dose response experiments.
This module has as primary entities: Substances Test systems Responses
Output of this module is used by: Dose response models

Dose response data data formats

The meta-data of dose response experiments (such as name, description, etc.) are specified in the DoseResponseEx-
periments table.
For presenting the data of these experiments to the system, there are two formats: a single table format (DoseRe-
sponseData) and a relational data format (three tables DoseResponseExperimentDoses, ExperimentalUnitProperties,
DoseResponseExperimentMeasurements). Usually, the single table format will be the easier one. For internal use in
MCRA, this single table data is converted to the relational data format.

Dose response data

Dose response data can be used to extract assessment group membership or hazard doses . The meta-data of dose
response experiments (such as name, description, etc.) are specified in the DoseResponseExperiments table. For
presenting the data of these experiments to the system, there are two formats: a single table format (DoseResponse-
Data) and a relational data format (three tables). Usually, the single table format will be the easier one. For internal
use in MCRA, this single table data is converted to the relational data format.
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Dose response experiments

General information about the dose response experiments, such as the (unique) identifier, name, description, the
used test-system, and the dose unit is stored in the table DoseResponseExperiments. If the data of an experiment is
provided in a single table format, then the fields Time, Covariates, Substances, and Responses can be used to map
the column header names of the columns of the single data table to these their respective types.
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Table 2.136: Table definition for DoseResponseExperiments.
Name Type Description Aliases Required
idExperiment AlphaNumeric(50) Unique identification code of

the dose effect experiment.
idExperiment,
Id, Code

Yes

Name AlphaNumeric(100) Name of the dose effect
experiment.

Name No

Description AlphaNumeric(200) Description of the dose effect
experiment.

Description No

Date DateTime The starting date of the
experiment.

Date No

Reference AlphaNumeric(200) External reference, for
instance, to the experiment
protocol and/or supporting
material.

Reference No

Experimental-
Unit

AlphaNumeric(100) The name of the experimental
unit of the experiment, e.g.,
rat, cage, litter, vial, cup,
petridish.

Experimental-
Unit

No

DoseRoute AlphaNumeric(100) For in-vivo test systems, the
route in which the dose was
administered

DoseRoute No

Substances AlphaNumeric Code or comma separated list
of the codes of the substances
measured in the experiment.
E.g., ‘Cyproconazole,
Thiram’. Required when
presenting the dose-response
data in a single table. Make
sure that in table
DoseResponseData the
column headers exactly match
these names.

idSubstance,
SubstanceId,
SubstanceCode,
Substance,
idSubstances,
SubstanceIds,
SubstanceCodes,
Substances

Yes

DoseUnit DoseUnits Unit of the doses
administered in this
experiment.

DoseUnit Yes

Responses AlphaNumeric Code or comma separated list
of codes of the responses
measured in the experiment.
E.g., ‘AngleM_PQ,
Mortality’. Required when
presenting the dose-response
data in a single table. Make
sure that in table
DoseResponseData the
column headers exactly match
these names.

Responses,
Response,
idResponses,
idResponse

Yes

Time AlphaNumeric(100) Identifier of the time field of
the experiment. Required
when presenting the
dose-response data in a single
table and responses are
measured at multiple times.
Make sure that in the table
DoseResponseData the
column header of the
time-column exactly matches
this name.

Time, Times No

TimeUnit TimeUnit Unit of the time scale used in
the experiments.

TimeUnit No

Covariates AlphaNumeric(200) Comma separated list of the
names/codes of the covariates
of the experiment. E.g.
‘Gender, Inhibitor,
GroupingVariable’. Required
when presenting the
dose-response data in a single
table and there are relevant
covariates. Make sure that in
table DoseResponseData the
column headers exactly match
these names.

Covariates,
Covariate
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Table aliases: DoseResponseExperiments, DoseResponseExperiment.

Dose response data

Single (two-way) table data format for specifying data of dose response experiments (as alternative for the relational
format). The column headers are dynamic and should be defined in the table DoseResponseExperiments through
fields Substances and Responses (and, optionally, Covariates and Time). For responses given as aggregated statis-
tics, also SD, CV, N and Uncertainty can be specified as [Datatype:Response]. E.g., ‘SD:Y’, ‘CV:Y’, ‘N:Y’. Uncer-
tainty upper 95%limits can be specified as ‘UncertaintyUpper:Y’. For each quantal response an additional column
‘N:[responsename]’is required with binomial totals (e.g. Mortality = 3, N:Mortality = 10).

Table 2.137: Table definition for DoseResponseData.
Name Type Description Aliases Required
idExperiment AlphaNumeric(50) Unique identification code of

the dose effect experiment.
idExperiment,
Experiment,
Code

No

Experimental
unit

AlphaNumeric(50) Experimental unit numbers or
identifiers. The column name
of the experimental unit
should be as specified in the
dose response experiment
record.

Experimental-
Unit,
Experimental-
Units,
Experimental
unit

No

Substance(s) AlphaNumeric(100) One or more columns with
doses for each substance, in
the unit as specified in the
dose response experiment
table. The column name(s)
should match the substance
codes listed in the
comma-separated list of the
substances field of the dose
response experiment record.

Yes

Response(s) AlphaNumeric(100) One or more columns with
results for each response, in
the unit(s) as specified in the
dose response experiment
table. The column name(s)
should match the response
codes listed in the
comma-separated list of the
responses field of the dose
response experiment record.

Yes

Time Numeric The column containing the
observed response times. The
column name (header) should
match that of the Time
column in the dose response
experiment record.

No

Covariate(s) AlphaNumeric(100) The column(s) containing
additional properties of the
experimental unit. The
column name (header) should
match the codes of the
comma-separated covariates
list in the dose response
experiment record.

No
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Table aliases: TwoWayDoseResponseData, DoseResponseDataTwoWay, DoseResponseData.

Relational dose response data

In the relational data format, dose response experiment data can be specified using the triplet of tables: DoseRe-
sponseExperimentDoses, DoseResponseExperimentMeasurements, and ExperimentalUnitProperties. These tables
describe, respectively, the experiment designs (including the administered substance doses), the response measure-
ments, and additional properties of the experimental units of the experiment.

Dose response experiment doses

The table DoseResponseExperimentDoses describes the experiment design, being a complete specification of which
doses of which substances were applied to which experimental unit and if relevant at what time.

Table 2.138: Table definition for DoseResponseExperimentDoses.
Name Type Description Aliases Required
idExperiment AlphaNumeric(50) Identification code of the

experiment to which this
design record belongs.

idExperiment,
Experiment

Yes

idExperimental-
Unit

AlphaNumeric(50) Identification code of the
experimental unit to which
the dose is applied.

idExperimental-
Unit,
Experimental-
Unit

Yes

Time Numeric The time of administration of
the dose.

Time No

idSubstance AlphaNumeric(50) Code of the substance that
was administered.

idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Dose Numeric The dose that was
administered.

Dose Yes

Table aliases: DoseResponseExperimentDoses, DoseResponseExperimentDose.

Experimental unit properties

The table ExperimentalUnitProperties can be used to specify additional properties of the experimental units of the
experiment. For instance, the gender of the rat, in case rats are the experimental units.
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Table 2.139: Table definition for ExperimentalUnitProperties.
Name Type Description Aliases Required
idExperiment AlphaNumeric(50) Identification code of the

experiment.
idExperiment,
Experiment

Yes

idExperimental-
Unit

AlphaNumeric(50) Identification code of the
experimental unit.

idExperimental-
Unit,
Experimental-
Unit

Yes

PropertyName AlphaNumeric(50) Name of the experimental
unit property.

Property, Name Yes

Value AlphaNumeric(100) Value of the experimental
unit property.

PropertyValue No

OtherProperty Other properties of
experimental units are
automatically parsed, using
the column name (header) as
property name.

No

Table aliases: ExperimentalUnitProperties, ExperimentalUnitProperty.

Dose response experiment measurements

The table DoseResponseMeasurements describes the measurements that were done in the experiments. That is, for
each response and experimental unit, at each observation time, one measurement should be recorded. If the response
is an aggregated statistic, then this record may also include a standard deviation and number of units over which was
aggregated.
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Table 2.140: Table definition for DoseResponseExperimentMeasure-
ments.

Name Type Description Aliases Required
idExperiment AlphaNumeric(50) Identification code of the

experiment to which this
measurement belongs.

idExperiment,
Experiment

Yes

idExperimental-
Unit

AlphaNumeric(50) Identification code of the
experimental unit from which
the measurement is taken.

idExperimental-
Unit,
Experimental-
Unit

Yes

idResponse AlphaNumeric(50) Identifier of the response that
is measured.

idResponse,
Response

Yes

Time Numeric Time of observation. Time No
ResponseValue Numeric The measured response. ResponseValue,

Value
Yes

SD:Response Numeric For aggregated responses, the
standard deviation of the
measurement.

SD:Response,
ResponseSD

No

CV:Response Numeric For aggregated responses, the
coefficient of variation (cv) of
the measurement.

CV:Response,
ResponseCV

No

N:Response Numeric For aggregated responses, the
number of units over which
was aggregated.

N:Response,
ResponseN

No

Uncertainty-
Upper:Response

Numeric Optionally, measurement
uncertainty quantification in
terms of the upper value (i.e.,
an estimate of 95th
percentile).

Uncertainty-
Upper:Response,
Response-
Uncertainty-
Upper,
Uncertainty-
Upper,
Upper

No

Table aliases: DoseResponseExperimentMeasurements, DoseResponseExperimentMeasurement,
DoseResponseMeasurements, DoseResponseMeasurement.

Dose response data settings

Selection settings

Table 2.141: Selection settings for module Dose response data.
Name Description
Experiments The dose response experiments of interest.
Merge dose response data of
multiple experiments

Specifies whether the dose response data of multiple experiments
should be merged into one large dose response data set.

Dose response data as data

Dose response data can be provided per experiment or study in which several responses (on in-vitro or in-vivo test
systems) are measured from several administered substance doses.

• Dose response data data formats
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2.5.4 Dose response models

Dose response models are models fitted to dose response data and can be provided as data or calculated using a local or
remote version of PROAST. The main results for hazard and risk assessment are benchmark doses (BMDs), related
to a specified substance, response, optionally covariate value, and the benchmark response (BMR). Dose response
models can be uploaded as data, retrieved from PROASTweb through linked remote repositories, or calculated using
an internal version of PROAST .
This module has as primary entities: Test systems Responses Substances
Output of this module is used by: Hazard characterisations

Dose response models data formats

Dose response models

Dose response models are specified using three tables: the dose response models table holds the dose response model
definitions (id, name, description) and other information about the dose response models. The dose response model
benchmark doses table records the benchmark doses and (optionally) the model parameters for specific substances
and covariates. The dose response model benchmark doses uncertainty table records results from bootstrap runs for
the benchmark doses per substance/covariate combination.

Dose response models

Each dose response model has a unique id, a name (optional), and description (optional). Also, each dose response
model is associated with a specific dose response experiment (idExperiment) from which the data used to create the
model is obtained, a response (idResponse), one or more substances, and, optionally, specific covariates considered
by the dose response model. The combination of the benchmark response type and the associated value define the
benchmark response of the model. The dose unit specifies the unit used for the doses, and if applicable, the model
equation can be specified.
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Table 2.142: Table definition for DoseResponseModels.
Name Type Description Aliases Required
idDose-
ResponseModel

AlphaNumeric(50) The unique identification code
of the fitted dose response
model.

idDose-
ResponseModel,
idModel

Yes

idExperiment AlphaNumeric(50) The identification code of the
experiment from the dose
response model.

experiment-
Code,
experimentId

Yes

Name AlphaNumeric(100) The name of the dose
response model.

Name No

Description AlphaNumeric(200) Description of the dose
response model.

Description No

Substances AlphaNumeric Code or comma separated list
of the codes of the substances
in the Dose Response Model.
E.g., ‘Cyproconazole,
Thiram’.

Substances Yes

idResponse AlphaNumeric The response of the dose
response model.

idResponse,
Response

Yes

Covariates AlphaNumeric The covariates considered by
the dose response model.

Covariates,
Covariate

No

Benchmark-
Response

Numeric The value of the benchmark
response or critical effect size.

Benchmark-
Response,
CriticalEffect-
Size,
CES

Yes

Benchmark-
ResponseType

Benchmark-
ResponseTypes

Specifies how the benchmark
response is expressed. E.g.,
using a percent change in
mean response or, for quantal
response types, in terms of
extra risk, additional risk, or
ED50.

Benchmark-
ResponseType,
HazardEffect-
SizeType,
CriticalEffect-
SizeType

No

LogLikelihood Numeric Loglikelihood of the model
fit.

LogLikelihood No

DoseUnit AlphaNumeric(50) The dose unit (if not specified,
then mg/kg is assumed).

DoseUnit,
UnitDose

No

ModelEquation AlphaNumeric(500) If available, the model
equation of the dose response
model (R model equation) or
the identifier of the dose
response model type.

ModelEquation,
DoseResponse-
ModelEquation,
Equation

No

Table aliases: DoseResponseModels, DoseResponseModel.

Dose response model benchmark doses

The benchmark responses and benchmark doses belonging to the dose response models are recorded per sub-
stance/covariate in the dose response model benchmark doses table. Optionally, if the model equation of the dose
response model has been specified in the dose response models table, the model parameter values for this specific
substance/covariate can be specified here.
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Table 2.143: Table definition for DoseResponseModelBenchmarkDoses.
Name Type Description Aliases Required
idDose-
ResponseModel

AlphaNumeric(50) The identification code of the
dose response model to which
this record belongs.

idDose-
ResponseModel

Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Covariates AlphaNumeric(500) Comma separated list of the
covariate values for which this
benchmark dose applies.

Covariates,
Covariate

No

Benchmark-
Dose

Numeric The (nominal) benchmark
dose (BMD).

Benchmark-
Dose, BMD,
CED

Yes

Benchmark-
DoseLower

Numeric Benchmark dose lower
uncertainty bound (BMDL).

Benchmark-
DoseLower,
BMDL, CEDL

No

Benchmark-
DoseUpper

Numeric Benchmark dose upper
uncertainty bound (BMDU).

Benchmark-
DoseUpper,
BMDU, CEDU

No

Model-
Parameter-
Values

AlphaNumeric(500) Parameter values for dose
response models.

ParameterValues No

Table aliases: DoseResponseModelBenchmarkDoses.

Dose response model benchmark dose bootstraps

Empirical uncertainty values of the benchmark benchmark doses of dose response models can be recorded in the dose
response model benchmark doses bootstraps table. The uncertainty set identifier (idUncertaintySet) can be specified
to retain correlations between uncertainty records that originate from the same bootstrap run.

Table 2.144: Table definition for DoseResponseModelBenchmarkDos-
esUncertain.

Name Type Description Aliases Required
idDose-
ResponseModel

AlphaNumeric(50) The identification code of the
dose response model to which
this record belongs.

idDose-
ResponseModel

Yes

idUncertainty-
Set

AlphaNumeric(50) The uncertainty set identifier. idUncertainty-
Set,
UncertaintyId

Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Covariates AlphaNumeric(500) Comma separated list of the
covariate values for which this
benchmark dose applies.

Covariates No

Benchmark-
Dose

Numeric Benchmark dose (BMD). Benchmark-
Dose, BMD,
CED

Yes

Table aliases: DoseResponseModelBenchmarkDosesBootstraps, DoseResponseModelBenchmarkDosesUncertain.
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Dose response models calculation

Besides uploading dose response models as data or retrieving them from PROASTweb through linked remote repos-
itories, there is also a possibility to compute dose response models using an integrated version of PROAST. When
computing dose response models using the integrated version, MCRA will attempt to fit a dose response model for
each response of each dose response experiment. Depending on the type of data (e.g., response type, covariates
y/n, single or multiple substances) a PROAST run is configured and executed. If effect representations are provided,
then benchmark responses specified by the effect representations data are used, otherwise only the model fits will be
computed without benchmark doses.

Dose response models as data

Dose response models as data contain the details of fitted dose response models. The main elements for hazard and
risk assessment are the benchmark doses (BMDs) related to specified substances, responses, and optionally covari-
ate values for specified benchmark responses (BMR). These specifications can be provided in data files or can be
retrieved/imported from PROAST output files on the PROAST website https://proastweb.rivm.nl/user/login using a
PROASTweb user account and an application access key.

• Dose response models data formats

Inputs used: Dose response data

Calculation of dose response models

Used as a calculator, dose response models are fitted to dose response data using an MCRA-internal version of
PROAST. Currently, all available models appropriate for the response type will be fitted, and for the Hill and Expo-
nential model families, the best fitting model based on maximum likelihood will be selected. The set of results for
the calculation will include BMDs etc. for all fitted models.

• Dose response models calculation

Inputs used: Effect representations

2.5.5 Effect representations

Effect representations specify the responses that can be used to measure specified effects and which response levels,
the benchmark response (BMR), define the hazard limits for the effects.
This module has as primary entities: Effects Responses
Output of this module is used by: Hazard characterisations Dose response models

Effect representations data formats

Effect representations

Effect representations specify responses that may represent the effect.

Effect representations

One response can be set as the canonical response (golden standard). For a quantitive or stochastically qualitative
canonical response a benchmark response should be defined.
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Table 2.145: Table definition for EffectRepresentations.
Name Type Description Aliases Required
idEffect AlphaNumeric(50) Identifier of the effect idEffect Yes
idResponse AlphaNumeric(50) Identifier of the response idResponse Yes
Benchmark-
Response

Numeric The threshold response value
that defines a hazard. For
numeric responses
(Continuous, Quantal, Count)
the value that defines a
hazard. For Binary responses
1 defines a hazard by default,
unless redefined here.

BenchMark-
Response,
HazardEffect-
Size, BMR,
CriticalEffect-
Size,
CES

No

Benchmark-
ResponseType

Benchmark-
ResponseTypes

Specifies how the
BenchMarkResponse is
expressed, relative to the
response at zero dose, or
absolute. Required for
numeric response types
(Continuous, Quantal,
Count). For qualitative
responses (Ordinal,
Categorical) Absolute is used.

Benchmark-
ResponseType,
HazardEffect-
SizeType,
CriticalEffect-
SizeType

No

Table aliases: EffectRepresentations, EffectRepresentation.

Effect representations as data

Effect representations are provided as data in the form of specified combinations of effect and response, optionally
with a benchmark response that defines a hazard limit for the effect.

• Effect representations data formats

Inputs used: AOP networks

2.5.6 Hazard characterisations

Hazard characterisations are benchmark doses for active substances and for the chosen effect at the chosen target
level (external or internal) of the hazard assessment. Hazard characterisations are based on points of departure, such
as BMDs from dose-reponse models or externally specified points of departure (MDSs, NOAELs or LOAELs). The
computation may involve inter-species conversion, intra-species factors and the use of kinetic models or absorption
factors to convert external doses to internal doses.
This module has as primary entities: Substances Effects
Output of this module is used by: Active substances Relative potency factors Risks

Hazard characterisations data formats

Hazard characterisations

Hazard characterisations provide reference threshold values associated with the hazard of interest. Examples are
ADI, ARfD, BMD, NOAEL.
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Hazard characterisations

Hazard characterisations are specified for combinations of hazard characterisation type, effect, substance, population
type, target level, and exposure route (for external) or target organ (for internal).
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Table 2.146: Table definition for HazardCharacterisations.
Name Type Description Aliases Required
idHazard-
Characterisation

AlphaNumeric(50) Id of the hazard
characterisation.

id, idHazard-
Characterisation

No

idEffect AlphaNumeric(50) Code of the (critical) effect
linked to this hazard
characterisation.

idEffect,
EffectId, Effect

No

idSubstance AlphaNumeric(50) The code of the substance. idSubstance Yes
idPopulation-
Type

AlphaNumeric(50) The code of the population
type for which this reference
value is defined. If not
specified, PS06A, Consumers
is assumed.

idPopulation-
Type

No

TargetLevel TargetLevelType The target level. I.e., internal
or external. If omitted,
external is assumed

TargetLevel No

ExposureRoute ExposureRouteTypes The exposure route (only
applicable if target level is
external). If not specified,
Dietary is assumed.

ExposureRoute No

TargetOrgan AlphaNumeric(50) The target organ (should be
specified when target level is
internal).

No

IsCriticalEffect Boolean Specifies whether this value is
the value associated with the
critical effect. If omitted, No
is assumed

IsCriticalEffect No

ExposureType ExposureTypes The exposure type associated
with the hazard
characterisation (i.e., chronic
or acute).

ExposureType Yes

Hazard-
Characterisation-
Type

Hazard-
Characterisation-
Types

The type of the hazard
characterisation (e.g., ARfD,
ADI, NOAEL, BMD).

Hazard-
Characterisation-
Type

Yes

Qualifier QualifierType Qualifier of the hazard
characterisation value, e.g.
equal-to (=) or smaller-than
(<). If omitted, = is assumed.

QualifierType No

Value Numeric Reference value that
characterises the hazard.

Value, Hazard-
Characterisation-
Value

Yes

DoseUnit DoseUnits Unit of the hazard
characterisation value.

DoseUnit, Unit Yes

idPointOf-
Departure

AlphaNumeric(50) The code of the point of
departure from which this
hazard characterisation was
derived.

idHazardDose,
idPod

No

Combined-
Assessment-
Factor

Numeric Combined assessment factor
(includes, e.g., safety factor,
but also other extrapolation
factors that may be used to
derive the hazard
characterisation from the
underlying PoD).

Combined-
Assessment-
Factor

No

PublicationTitle AlphaNumeric Title of the publication of the
study in which this hazard
characterisation was
established.

PublicationTitle,
Title

No

Publication-
Authors

AlphaNumeric Author(s) of the publication
of the study in which this
hazard characterisation was
established.

Publication-
Authors,
Publication-
Author, Author,
Authors

No

PublicationYear Integer Year of the publication of the
study in which this hazard
characterisation was
established.

PublicationYear,
Year

No

PublicationUri AlphaNumeric Uniform resource identifier of
the reference publication.

URI, URL,
PublicationURI,
PublicationURL

No
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Table aliases: HazardCharacterisations.

Hazard characterisations calculation

Hazard characterisations can be defined as deterministic threshold values (e.g. ADI, ARfD) or as distributions (using
probabilistic models). They are linked to an effect of interest. Hazard characterisations depend on the risk type (acute
or chronic) and the target level of the human body (external via some route of exposure or internal for a specific defined
organ or compartment). Hazard characterisations are derived from points of departure provided as data and/or from
dose-response models. The procedure for computing hazard characterisations has two main phases: 1) collection of
all available hazard characterisation candidates and alignment with the target system, and 2) aggregation over multiple
available hazard characterisations and imputation of missing hazard characterisations.
Collection of available hazard characterisation candidates involves collecting the appropriate points of departure data
and/or dose-response models that are used for deriving the hazard characterisations. In MCRA, a distinction is made
between three methods for computing hazard characterisations:

1. Calculation of hazard characterisations from externally specified in-vivo PoDs (BMDs, NOAELs, other).
2. Calculation of hazard characterisations from PoDs (in this case BMDs) calculated from dose response data.
3. (in cumulative assessments) Calculation of hazard characterisations based on an in-vivo PoD for the index

substance and in-vitro RPFs from dose-response models for the other substances (IVIVE model).
For all three methods, the collected points of departure and benchmark doses should be aligned with the target system.
This alignment may involve various conversion steps for each point of departure and specific substance, and can be
formally specified as:

HC = fexpression−type ⋅ fkinetic ⋅ 1
finter−species

⋅ 1
fintra−species

⋅ PoD

where:
• HC denotes the hazard characterisation.
• fexpression−type denotes the expression type correction factor, e.g., for extrapolation from LOAEL or
NOAEL, or from NOAEL to BMD.

• finter−species denotes the inter-species factor for extrapolation from animal to human (inter-species).
• fintra−species denotes the intra-species factor extrapolation from the average to the sensitive human or prob-
abilistic calculation of the distribution of human individuals (intra-species).

• fkinetic denotes the kinetic conversion factor for conversion from internal to external or external to internal
hazard characterisations.

• PoD denotes the point of departure.
It may be that for some substances multiple hazard characterisations are available (e.g., obtained from multiple ex-
periments) and/or that for other substances hazard characterisations are still missing. Hence, two final steps remain
to come to the final set of hazard characterisation:

• Aggregation over multiple available hazard characterisations.
• Imputation of missing hazard characterisations.

Hazard characterisation type extrapolation

Hazard doses, or points of departure can be of various types. E.g., BMDs, NOAELs, or LOAELs. When computing
hazard characterisations, the type in which the hazard characterisations are expressed (i.e., the hazard characterisation
expression type) should be specified explicitly. When points of departure from types different from the expression type
are provided, these should be translated to the specified expression level. In the current implementation, the simple
conversion factors shown in Table 2.147 are used, roughly based on the WHO guidance document on evaluating and
expressing uncertainty in hazard characterization [6].
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Table 2.147: Conversion factors for hazard characterisation types.
From To Conversion factor
BMD NOAEL 1/3
BMD LOAEL 1
NOAEL BMD 3
NOAEL LOAEL 1/3
LOAEL BMD 1
LOAEL NOAEL 1/3

Inter-species extrapolation

Hazard doses, or points of departure, are commonly only determined for animals, not for humans. In order to derive
hazard characterisations for humans, the animal hazard doses need to be converted to toxicologically equivalent
doses for humans. This extrapolation is usually expressed as a multiplication factor, and traditionally a factor of 10 is
used (which is roughly obtained from the product of a factor of 3.2 for toxicokinetic variability and a factor 3.2 for
toxicodynamic variability).
The following methods are available within the toolbox:

1. No inter-species extrapolation: Assume that for all available points of departure, the animal hazard dose is
equal to the human hazard dose. Effectively, this is equivalent to using a convertion factor of 1.

2. Default distribution: Use a conversion factor drawn from a default, substance and species independent log-
normal uncertainty distribution specified (as model settings) by a geometric mean (GM) and geometic standard
deviation (GSD). In the nominal run, the nominal value of this distribution (i.e., the geometric mean) is used
as a conversion factor. In the uncertainty analysis loop, provided that inter-species extrapolation uncertainty is
included in the uncertainty analysis, a single factor is drawn from the lognormal distribution.

3. Substance/species specific distributions: Use conversion factors drawn from substance/species specific log-
normal uncertainty distributions specified (as data) by a geometric mean (GM) and geometic standard deviation
(GSD). In the nominal run, a factor equal to the geometric mean is used for all combinations of substance and
species. In the uncertainty analysis loop, provided that inter-species extrapolation uncertainty is included in
the uncertainty analysis, a uncertainty factor is drawn from the lognormal distribution with 𝜇 = 0 and 𝜎2 = 1,
which is used to obtain correlated draws for all available inter-species conversion factor distributions. If the
distribution parameters are missing for a specific substance/species, then the default distribution is used as a
fallback.

Intra-species extrapolation of hazard characterisations

There is variation between individuals concerning their individual sensitivities to experience health effects. In some
scenarios the aim is to perform assessments for the sensitive individuals instead of the average individuals for which
the points of departure are derived. If this is the case, then extrapolation is required to translate hazard characterisa-
tions derived for the average individual to hazard characterisations for a sensitive individual. In traditional exposure
assessments, a safety of 100 is commonly used as a margin of safety, that is assumed to be composed of a interspecies
extrapolation factor (factor 10), and inter-individual extrapolation factor (factor 10). I.e., the hazard characterisation
defined for the sensitive individual is defined as

HCsens = 1
fintra−species

⋅ HCavg

Here finter−species denotes the intra-species factor. An alternative to using a fixed safety factor, is to define intra-
species variability may be explicitly a lognormal distribution, characterised by a geometric mean (GM) equal to 1
and a geometric standard deviation (GSD). For risks calculations, this distribution could be used to sample individual
hazard characterisations. This effectively converts the description of hazard characterisations to include variability,
with an unbiased central value.
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In-vitro in-vivo extrapolation (IVIVE)

The in-vitro in-vivo extrapolation method implemented in MCRA is based on the following prerequisites:
1. For one substance, the index substance, a reliable point of departure is available for the adverse outcome of

interest obtained from an in-vivo assay (i.e., external dose).
2. There are other substances for which there is a dose-response model available from an in-vitro assay on a

response representing an early key event of the adverse outcome for these substances and the index substance.
In IVIVE, these RPFs, in combination with the known hazard characterisation of the index substance, can be used to
derive hazard characterisations for the other substances as well. Figure 2.35 shows the conceptual model that forms
the basis of the IVIVE methodology of MCRA.

Figure 2.35: Conceptual model IVIVE.

IVIVE for calculating internal hazard characterisations

1. Translate the (external) PoD of the index substance substance to an internal hazard characterisation for the
human target system/compartment.

2. If the RPFs are obtained are obtained using mol-based specification of the doses, then convert the mol-based
RPFs to mass-based RPFs. I.e.,

RPFmass−based,𝑖 = RPFmol−based,𝑖 ⋅ MWref

MW𝑖
3. Derive internal hazard characterisations for the human target system for the other substances by multiplying

the RPF obtained from dose-response modelling with the hazard characterisation of the index substance. I.e.,

HC𝑖 = HCref ⋅ RPFmass−based,𝑖
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IVIVE for calculating external hazard characterisations

1. Translate the PoD of the index substance to an external human hazard characterisation (dietary/oral exposure
route).

2. Derive an internal hazard characterisation for the index substance, with an target organ/compartment repre-
sentative for the response of the dose-response model.

3. If the RPFs are obtained are obtained using mol-based specification of the doses, then convert the mol-based
RPFs to mass-based RPFs.

4. Derive internal hazard characterisations for the human target system for the other substances by multiplying
the RPF obtained from dose-response modelling with the hazard characterisation of the index substance.

5. Convert the internal hazard characterisations of the other substance to external hazard characterisations for the
dietary/oral exposure route using.

Kinetic conversion of hazard characterisations

When the hazard characerisation level is internal and points of departure are available for external exposures (e.g.,
NOAELs from in-vivo animal studies) or when the hazard characterisation level is external and benchmark doses are
available at the internal level, then kinetic conversion models are needed to translate the external doses to equivalent
internal doses at the target compartment/organ of interest or vice-versa.
In the toolbox, this alignment from internal to external or from external to internal is generally termed kinetic con-
version, associated with a kinetic conversion factor. The kinetic conversion factor is a multiplication factor needed
to obtain a hazard characterisation on the target level from a hazard characterisation of the point of departure or
benchmark dose. Depending on the chosen kinetic modelling tier, this kinetic conversion factor may be 1) assumed
to be one, 2) derived from absorption factors, or 3) derived using PBPK models.
An important detail in the use of kinetic conversion factors for computing hazard characterisations is the order be-
tween kinetic conversion and inter-species extrapolation. Notice that when points of departure are determined for
animals, a choice should be made regarding the order of inter-species extrapolation and kinetic modelling. That is,
one may first choose to convert animal external point of departure to an internal hazard characterisation for that
animal, using the available animal kinetic model. Alternatively, one may first extrapolate the animal external point
of departure to a human external hazard characterisation, and thereafter apply the human kinetic model to obtain
internal hazard characterisations. In the toolbox, only the latter approach is currently implemented.

Extrapolation from external to internal hazard characterisations

The calculation of internal hazard characterisations based on external hazard characterisations is similar to the proce-
dure for computing internal exposures. In the simplest tier, equivalence can be assumed between internal and external
hazard characterisations, and in higher tiers absorption factors, respectively PBPK models can be used.

Calculation of internal doses using absorption factors

In the simplest form, internal doses are obtained from external exposure concentrations using multiplication factors
(or, absorption factors) that can be specified by substance and by route. That is, for a given substance, the internal
hazard characterisation HCint can be derived from an external hazard characterisation HCext as

HCint = fabs,𝑟 ⋅ HCext,𝑟

Here, r denotes the route of the external exposure HCext, and fabs,𝑟 denotes the absorption factor of route 𝑟 for
the specified compartment. Note that this model assumes that the external hazard characterisations are specified as
concentrations (i.e., substance amount divided by the body weight).

2.5. Hazard modules 175



MCRA Documentation, Release 9.0

Calculation of internal doses using human PBPK models

Amore detailed alternative to using absorption factors is to use one of the advanced PBPKmodels available inMCRA.
In this approach, for each substance independently, an external exposure equivalent to the dose of the external hazard
characterisation is presented to a representative simulated individual for a number of simulated days to the PBPK
model of the individual. This representative individual should represent the “average” individual of the population,
with nominal physiological properties (e.g., an average bodyweight of 70kg). This yields a time course of the inter-
nal substance amount at the specified target compartment/organ from which a long term average substance amount
(chronic) or peak substance amount (acute) can be obtained. By dividing this substance amount by the weight of the
compartment, an internal concentration is obtained, which then represents the internal hazard characterisation.
More details on computing internal doses from external doses can be found in the description of the calculation of
internal exposures from external exposures. For both tasks, the procedure for computing internal exposures/doses
is exactly and the same kinetic model settings, such as dosing patterns and non-stationary period period apply for
calculation of internal hazard characterisations as well.

Calculation of internal doses using animal PBPK models

In the above methods, the assumption is that the external points of departure (often obtained from experiments on
animals) are first converted to external hazard characterisations for humans, and a human kinetic model is used for
obtaining the internal hazard characterisations. As mentioned, an alternative approach is to use first the animal PBPK
models to derive an internal hazard characterisation specific for the tested animal species and thereafter extrapolate to
humans. When there are more precise kinetic models available for the animal used in the experiments for obtaining
the point of departure, this could be a prefered path.

Note: Notice that this procedure is not yet implemented.

Extrapolation from internal to external hazard characterisations

In some cases, hazard characterisations are available at the internal level whereas the specified hazard characerisation
level is external. This situation may occur, for instance, in in-vitro in-vivo extrapolation (IVIVE). In this case, conver-
sion is needed from the internal level to the external level, where the external level is implicitly defined as comming
from the dietary/oral route of exposure.
When using absorption factors, the external (dietary) hazard characterisation of a substance is simply computed by
dividing the internal hazard characterisation by the dietary absorption factor. I.e.,

HCext,diet = HCint
fabs,diet

When using PBPK models, reverse dosimetry is needed to find for the available internal hazard characterisation, the
corresponsing external (dietary) doses that yield the internal concentrations specified by the internal hazard charac-
terisation. In MCRA, this is done using a bisection method, in which external doses are systematically fed to the
PBPK model in order to converge to an external dose that yields the specified internal hazard characterisation with
some level of precision.

Hazard characterisation imputation

In some cases it may be that there are substances that are known to cause (or may possibly cause) the effect of interest,
but for which there are no data available for obtaining hazard characterisations. I.e., for these substances, there are no
points of departure or dose response models. Instead of excluding these substances in quantitative analyses, it is also
possible to impute hazard characterisations for these substances based on hazard characterisations of other (similar)
substances, and use these for calculating, e.g., relative potency factors or for risk assessment.
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Munro P5 (TTC approach)

The Threshold of Toxicological Concern (TTC) is an example of a tier for extrapolation of hazard characterisations
from other compounds that is already in common use (see [34]). The Munro collection of NOELs/LOAELs is a
collection of NOELs/LOAELs for chemicals for the critical (i.e., first occurring) effect. In the TTC approach, the
toxicity of an unknown substance is, depending on its Cramer class (see [13]), imputed by the 5th percentile NOAEL
of the sub-collection of the corresponding Cramer class.
Two variations of this approach are to use the empirical NOAEL distribution itself (just sample from the NOAEL
data), or to fit a distribution (e.g. lognormal) to the empirical data and sample from the parametric distribution.
MCRA provides an implementation of the TTC approach that uses the empirical distribution. In the nominal run,
this implementation imputes the hazard characterisations with a value equivalent to the TTC. In the uncertainty runs,
NOAELs are sampled from the empirical distribution.
The TTC is a conservative estimate of the NOAEL for at least two reasons:

1. TTCs are calculated from a collection of NOELs for the critical (i.e., first occurring) effect within each study
and often the effect of interest will not be the critical effect, and therefore higher NOAELs are expected.

2. The TTC is a low percentile and therefore a conservative estimate for a random class member with unknown
NOAEL.

Munro central value

To avoid the conservatism of taking the 5th percentile in the Munro P5 approach, alternatively, a nominal (or central)
value could be taken from the Munro collection for each Cramer class. For a nominal run without uncertainty, the
expected contribution of a substance with missing hazard characterisation to the risk as quantified in the hazard index
is obtained from

HI = SF ⋅
𝑛

∑
𝑖

exp𝑖
HC𝑖

Here SF are all combined safety factors. It follows from this equation that an unbiased estimate for the contribution
from a substance with missing hazard characterisations is obtained by taking the harmonic mean from the available
NOAELs:

NOAEL = (
𝑛

∑
𝑖=1

1
NOAEL𝑖

)
−1

This is the value to use in a nominal run without uncertainty for theMunro central value approach. For the uncertainty
runs, this approach also uses random sampling from the empirical distribution of the corresponding Cramer class.

Available hazard characterisations distribution P5

Another conservative aspect of the TTC approach is the fact that the Munro set lists NOELs/LOAELs for critical
effects, not for the specific effect under study. Therefore an alternative is to use the effect-specific hazard character-
isations of the substances for which these are available. This collection will have on average higher NOAELs than
those of the Munro NOEL collection, because for many substances, the effect of interest will not be the critical effect.

Available hazard characterisations distribution central value

Similar to the Munro central value approach, a central value could also be obtained from the set of effect-specific
hazard characterisations distribution for imputation of hazard characterisations. This approach may yield the most
realistic, or unbiased imputation value for missing hazard characterisations.
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Aggregation over multiple available hazard characterisations

In some scenarios, it may be that for a given substance and effect there are multiple available hazard characterisations.
This can happen, for instance, if there are two different NOAELs originating from different studies. In such cases, a
single hazard characterisation should be derived from the available candidates.
A conservative approach is to choose the lowest hazard characterisation of the available hazard characterisations. I.e.,

HC = min
𝑖=1,…,𝑛

HC𝑖

Alternatively, it is possible to aggregate the candidates into a new “average” hazard characterisation. For this, the
harmonic mean, also used for obtaining central value estimates in the imputation of missing hazard characterisations,
is a suitable approach.

HC = (
𝑛

∑
𝑖

1
HC𝑖

)
−1

Hazard characterisations settings

Selection settings

Table 2.148: Selection settings for module Hazard characterisations.
Name Description
Risk type The type of exposure considered in the assessment; acute (short

term) or chronic (long-term).
Target level Select to express hazard characterisations at external or internal

exposure level.

Calculation settings

Table 2.149: Calculation settings for module Hazard characterisations.
Name Description
Method Choose method for computing the hazard characterisations: from

in-vivo or in-vitro points of departure or both.
Expression type Specifies how hazard characterisations are expressed: as BMD, as

NOAEL, or the expression type is ignored.
Selection method in case of
multiple candidate hazard
characterisations

Choose either the most toxic (default) or an aggregated hazard
characterisation when in nominal runs there are multiple available
candidates. In uncertainty runs, multiple candidates are always
resampled.

Impute missing hazard
characterisations

If selected, missing hazard characterisations are imputed based on
Munro NOELs or on other available points of departure.

Imputation method Imputation of Hazard characterisations: use low percentile (P5) or
unbiased central estimate from either the Munro set or the
available POD collection.

Use BMDs from dose response
models

If selected, preferably BMDs from dose response models will be
used. Only if these are not available, other POD data are used.

Use inter-species conversions If selected, inter-species conversion factors ill be used (default
value, e.g. 10, or data).

Use intra-species factors If selected, intra-species conversion factors will be used (default
value, e.g. 10, or data).
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Uncertainty settings

Table 2.150: Uncertainty settings for module Hazard characterisations.
Name Description
Resample intra-species factor Specifies whether intra-species factors are resampled from a

parametric uncertainty distribution.
Resample hazard
characterisations or RPFs

Specifies whether to resample the hazard characterisations or
relative potency factors. Requires hazard characterisation or RPF
uncertainty to be quantified in DoseResponseModelsUncertain or
RelativePotencyFactorsUncertain tables.

Calculation of hazard characterisations

• Hazard characterisations calculation

Inputs used: Dose response models Effect representations Inter-species conversions Intra species factors Kinetic models
Settings used

• Calculation Settings

2.5.7 Inter-species conversions

Inter-species conversions specify how to convert a hazard characterisation for a given species to a hazard characteri-
sation for humans. In the simplest approach, this specifies a fixed inter-species factor. In a higher tier, this specifies
a geometric mean (GM) and geometric standard deviation (GSD) for a lognormal uncertainty distribution of the
interspecies factor. Inter-species conversion are specified per effect and can be general or substance-specific.
This module has as primary entities: Substances Effects
Output of this module is used by: Hazard characterisations

Inter-species conversions data formats

Inter-species conversions

Inter-species conversion models specify how to convert a hazard dose for a given species to a hazard dose for humans.

Inter-species model parameters

Inter-species extrapolation factors are described using a lognormal distribution specified by a geometric mean (GM)
and geometic standard deviation (GSD). Inter-species factors are defined for an effect and a species andmay optionally
be specified specifically for a substance.
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Table 2.151: Table definition for InterSpeciesModelParameters.
Name Type Description Aliases Required
idEffect AlphaNumeric(50) The code of the effect for

which this inter-species model
is defined.

idEffect,
EffectId, Effect

Yes

idSubstance AlphaNumeric(50) The code of the substance for
which this inter-species model
is defined.

idSubstance,
SubstanceId,
SubstanceCode,
Substance

No

Species AlphaNumeric(50) Species Species Yes
InterSpecies-
GeometricMean

Numeric Interspecies geometric mean. InterSpecies-
GeometricMean,
InterSpeciesGM

Yes

InterSpecies-
Geometric-
Standard-
Deviation

Numeric Interspecies geometric
standard deviation.

InterSpecies-
Geometric-
Standard-
Deviation,
InterSpeciesGS-
D

Yes

Standard-
HumanBody-
Weight

Numeric The standard human body
weight.

Standard-
HumanBody-
Weight

Yes

HumanBody-
WeightUnit

AlphaNumeric(50) The unit of the human body
weight speciication (kg is
assumed if not defined).

HumanBody-
WeightUnit

No

Standard-
AnimalBody-
Weight

Numeric The standard animal body
weight.

Standard-
AnimalBody-
Weight

Yes

AnimalBody-
WeightUnit

AlphaNumeric(50) The unit of the animal body
weight specification (kg is
assumed if not defined).

AnimalBody-
WeightUnit

No

Table aliases: InterSpeciesModelParameters, InterSpeciesModelParameter, InterSpeciesFactors,
InterSpeciesFactor.

Inter-species conversions settings

Selection settings

Table 2.152: Selection settings for module Inter-species conversions.
Name Description
Default interspecies factor
geometric mean

Default interspecies factor geometric mean.

Default interspecies factor
geometric standard deviation

Default interspecies factor geometric standard deviation.

Uncertainty settings

Table 2.153: Uncertainty settings for module Inter-species conversions.
Name Description
Resample inter-species factor Specifies whether inter-species factors are resampled from a

parametric uncertainty distribution.
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Inter-species conversions as data

• Inter-species conversions data formats

2.5.8 Intra species factors

Intra-species factors specify how to convert a hazard characterisation from the average to a sensitive human individual.
This module has as primary entities: Substances Effects
Output of this module is used by: Hazard characterisations

Intra-species factors data formats

Intra-species factors

Intra-species factors.

Intra-species model parameters

Intra species factors.

Table 2.154: Table definition for IntraSpeciesModelParameters.
Name Type Description Aliases Required
idEffect AlphaNumeric(50) The effect code. idEffect,

EffectId, Effect
Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

No

IntraSpecies-
Lower-
VariationFactor

Numeric The lower variability factor.
The lower and upper factor
are used to derive a geometric
standard deviation (gsd) and
degrees of freedom (df).

IntraSpecies-
LowerVariation-
Factor

No

IntraSpecies-
UpperVariation-
Factor

Numeric The upper variability factor.
The lower and upper factor
are used to derive a geometric
standard deviation (gsd) and
degrees of freedom (df).

IntraSpecies-
UpperVariation-
Factor

Yes

idPopulation AlphaNumeric(50) Unique identification code of
the population.

IdPopulation,
PopulationId

No

Table aliases: IntraSpeciesModelParameters, IntraSpeciesModelParameter, IntraSpeciesFactors,
IntraSpeciesFactor.

Intra species factors settings

Selection settings

Table 2.155: Selection settings for module Intra species factors.
Name Description
Default intra-species factor Default intra-species (safety) factor.
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Intra species factors as data

In the simplest approach, intra-species factors are fixed factors. In a higher tier, lower and upper values for the intra-
species factor are used to derive a variability distribution (log-normal around 1) and an uncertainty distribution for
the geometric standard deviation related to human variability in sensitivity.

• Intra species factors data formats

2.5.9 Points of departure

Externally specified points of departure can be used as an alternative to calculated BMDs from dose response models.
Points of departure can be of various types, such as NOAEL, LOAEL or BMD. They can be used to construct the
list of active substances, to derive relative potency factors, and to perform health impact assessments.
This module has as primary entities: Substances Effects
Output of this module is used by: Active substances Hazard characterisations

Points of departure data formats

Points of departure

Points of departure, such as NOAELS and BMDs, describe the critical/reference levels of substance dose in relation
to the presence or absence of an effect. If available, the uncertainty of externally specified points of departure can
be specified with uncertainty sets (empirical distributions representing possible values) in the points of departure
uncertainty table.

Points of departure

Nominal points of departure should be presented in this table. Each point of departure should be linked to an effect
using the effect code (idEffect) and to substances using the substance code (idSubstance).
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Table 2.156: Table definition for HazardDoses.
Name Type Description Aliases Required
idModel AlphaNumeric(50) The dose response model

code.
idDose-
ResponseModel,
idModel, idPod,
idPointOf-
Departure, Pod,
PointOf-
Departure

No

idEffect AlphaNumeric(50) The effect code. idEffect,
EffectId, Effect

Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Species AlphaNumeric(50) The species used to obtain
this point of departure.

Species, System No

Point of
departure

Numeric Point of departure, can be of
various types, e.g. NOAEL,
LOAEL, BMD, CED

PointOf-
Departure,
LimitDose,
HazardDose,
Value, CED

Yes

Point of
departure type

HazardDoseTypes The type of the point of
departure: e.g. NOAEL,
LOAEL, BMD (default).

PODType,
HazardDose-
Type,
LimitDoseType

No

DoseUnit AlphaNumeric(50) The dose unit (if not specified,
then mg/kg is assumed).

DoseUnit,
UnitDose

No

Benchmark
response (BMR)

AlphaNumeric(100) The effect size. Benchmark-
Response,
CriticalEffect-
Size,
HazardEffect-
Size

No

ExposureRoute AlphaNumeric(100) The route of dose
administration used in the
study to obtain this point of
departure. If not specified
exposure route = Dietary is
assumed.

ExposureRoute,
RouteExposure

No

Table aliases: PointsOfDeparture, PointOfDeparture, HazardDoses, HazardDose.

Points of departure uncertainty

Often, the PODs found for a substance/effect combination are uncertain. This table facilitates in specifying the
POD uncertainty in the form of a set of uncertainty values that may additionally be specified for a substance/effect
combination.
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Table 2.157: Table definition for HazardDosesUncertain.
Name Type Description Aliases Required
idDose-
ResponseModel

AlphaNumeric(50) The dose response model
code (must correspond to
values in id column of
DoseResponseModels table).

idDose-
ResponseModel

Yes

idUncertainty-
Set

AlphaNumeric(50) The identification code of the
uncertainty set. During an
uncertainty iteration one set
will be picked to be the POD
value.

idUncertainty-
Set,
UncertaintyId

Yes

idEffect AlphaNumeric(50) The effect code. idEffect,
EffectId, Effect

Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Point of
departure

Numeric Point of departure, can be of
various types, e.g. NOAEL,
LOAEL, BMD, CED

PointOf-
Departure,
HazardDose,
LimitDose,
CED

Yes

DoseResponse-
Model-
Parameter-
Values

AlphaNumeric(200) A comma separated list of the
values of the parameters of
the model, format:
a=1.2,b=3.4,c=5.6

DoseResponse-
Model-
Parameter-
Values,
ParameterValues

No

Table aliases: PointsOfDepartureUncertain, PointOfDepartureUncertain, HazardDosesUncertain,
HazardDoseUncertain.

Points of departure settings

Uncertainty settings

Table 2.158: Uncertainty settings for module Points of departure.
Name Description
Resample hazard
characterisations or RPFs

Specifies whether to resample the hazard characterisations or
relative potency factors. Requires hazard characterisation or RPF
uncertainty to be quantified in DoseResponseModelsUncertain or
RelativePotencyFactorsUncertain tables.

Points of departure as data

Points of departure are provided as data for combinations of susbstance and effect and each is minimally described
by a reference value and a type (e.g., NOAEL or LOAEL). In addition, the exposure route, specifes, and references
may be specified.

• Points of departure data formats

Inputs used: AOP networks
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2.5.10 Relative potency factors

Relative potency factors (RPFs) quantify potencies of substances with respect to a defined effect, relative to the
potency of a chosen index substance. RPFs can be used to express combined exposures of multiple substances in
terms of a the exposure value of the chosen index substance (i.e., in index substance equivalents). In MCRA, hazard
characterisations, and therefore also RPFs are based on mass units (e.g., µg), and not on mol units. RPFs can be
different for different levels of the human organism (external, internal, specific compartment). RPFs can be given
as data or computed from hazard characterisations. RPFs can be specified with uncertainty. Computation from
uncertain hazard characterisations allows to include correlations between uncertain RPFs which originate from using
the same index substance.
This module has as primary entities: Substances Effects
Output of this module is used by: Concentrations Concentration models Dietary exposures with screening Dietary
exposures Exposures

Relative potency factors data formats

Relative potency factors

Relative potency factors quantify relative potencies of substances with respect to an effect and can be used to express
combined exposures of multiple substances in terms of the exposure value of the chosen index substance (i.e., as
index substance equivalents). Relative potency factors can be provided in case hazard characterisations are missing.
If available, the uncertainty of externally specified RPFs can be specified with uncertainty sets (empirical distributions
representing possible values) in an additional table.

Relative potency factors

Relative potency factors are linked to an effect using the effect code (idEffect) and to substances using the substance
code (idSubstance).

Table 2.159: Table definition for RelativePotencyFactors.
Name Type Description Aliases Required
idSubstance AlphaNumeric(50) The code of the substance. idSubstance,

SubstanceId,
SubstanceCode,
Substance

Yes

idEffect AlphaNumeric(50) The effect code. idEffect,
EffectId, Effect

Yes

RPF Numeric The relative potency factor. RPF, Relative-
PotencyFactor

Yes

Table aliases: RelativePotencyFactors, RelativePotencyFactor.

Relative potency factor uncertainty

This table contains sets of values representing the uncertainty for relative potency factors.
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Table 2.160: Table definition for RelativePotencyFactorsUncertain.
Name Type Description Aliases Required
idUncertainty-
Set

AlphaNumeric(50) The uncertainty set
identification number. During
each uncertainty iteration one
set is used.

idUncertainty-
Set,
UncertaintyId

Yes

idEffect AlphaNumeric(50) The effect code (must
correspond to values in id
column of Effects table).

idEffect,
EffectId, Effect

Yes

idSubstance AlphaNumeric(50) The substance code (must
correspond to values in id
column of Substances table).

idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

RPF Numeric The relative potency factor. RPF, Relative-
PotencyFactor

Yes

Table aliases: RelativePotencyFactorsUncertain, RelativePotencyFactorUncertain.

Relative potency factors calculation

Relative potency factors (RPFs) describe the potency of substances with respect to a defined effect, relative to the
potency of a chosen index substance. RPFs can be given as data or computed from hazard characterisations. The
RPF for substance 𝑖 is defined by the ratio of hazard characterisation value for the index substance (ref) and the
hazard characterisation value for substance 𝑖. That is,

RPF𝑖 = PODref/POD𝑖.

When the hazard characterisations are resampled in the uncertainty runs, RPFs are also recomputed based on the
bootstrapped hazard characterisations. In this way, RPF uncertainty can also included in the uncertainty analysis.

Relative potency factors settings

Calculation settings

Table 2.161: Calculation settings for module Relative potency factors.
Name Description
Index substance The substance of interest or index substance.

Uncertainty settings

Table 2.162: Uncertainty settings for module Relative potency factors.
Name Description
Resample hazard
characterisations or RPFs

Specifies whether to resample the hazard characterisations or
relative potency factors. Requires hazard characterisation or RPF
uncertainty to be quantified in DoseResponseModelsUncertain or
RelativePotencyFactorsUncertain tables.

Relative potency factors as data

• Relative potency factors data formats

Inputs used: Active substances AOP networks
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Calculation of relative potency factors

• Relative potency factors calculation

Inputs used: Hazard characterisations
Settings used

• Calculation Settings

2.6 In-silico modules

Two types of in-silico models are available: QSAR models specify assessment group memberships for active sub-
stances, as numbers in the interval [0,1]. This allows both crisp (0 or 1) and probabilistic memberships. Molecular
docking models specify binding energies and thresholds which can be used to convert binding energies to assessment
group memberships for active substances.

2.6.1 Molecular docking models

Molecular docking models specify binding energies for substances in specific molecular docking models related to a
specific health effect (adverse outcome).
This module has as primary entities: Substances Effects
Output of this module is used by: Active substances

Molecular docking models data formats

Required data tables:
• Molecular docking models, to identify models for a specified effect (receptor)
• Molecular docking binding energies, to specify the binding energies per substance for the receptor

Molecular docking models

Contains definitions of molecular docking models for a given effect (molecular initiating event), for example param-
eters needed in the conversion of binding energies to group memberships or to relative potency factors. Substance
specific binding energies are specified in the binding energies table.

Molecular docking models

Each docking model has a unique identifier, and optionally a name and a description. Each model is linked to an effect
using the idEffect field and optionally a binding threshold and the number of receptors can be added. A reference to
the source of the data can be stored in the reference field.
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Table 2.163: Table definition for MolecularDockingModels.
Name Type Description Aliases Required
id AlphaNumeric(50) The unique identification code

of the molecular docking
model.

idMolecular-
DockingModel,
idBinding-
EnergyModel

Yes

Name AlphaNumeric(100) The name of the molecular
docking model.

Name No

Description AlphaNumeric(200) Description of the molecular
docking model.

Description No

idEffect AlphaNumeric(50) The effect code, typically for
the Molecular Initiating Event
that is modelled

idEffect,
EffectId, Effect

Yes

Threshold Numeric Threshold Molecular Docking
binding energy (group
membership = 1 when
higher).

No

NumberOf-
Receptors

Integer Example parameter needed
for translating Molecular
Docking binding energies to
RPFs.

No

Reference AlphaNumeric(200) External reference(s) to
sources containing more
information about the
molecular docking model.

References No

Table aliases: MolecularDockingModels, MolecularDockingModel, BindingEnergyModels, BindingEnergyModel.

Molecular docking binding energies

Molecular docking model binding energies per substance

Table 2.164: Table definition for MolecularBindingEnergies.
Name Type Description Aliases Required
idMolecular-
DockingModel

AlphaNumeric(50) The id of the molecular
docking model or source.

idMolecular-
Docking,
Molecular-
DockingModel

No

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

BindingEnergy Numeric Molecular Docking binding
energy.

Molecular-
Docking-
BindingEnergy

Yes

Table aliases: MolecularBindingEnergies, MolecularBindingEnergy, BindingEnergies, BindingEnergy,
MolecularDockingBindingEnergies, MolecularDockingBindingEnergy.

Molecular docking models as data

• Molecular docking models data formats

Inputs used: AOP networks
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2.6.2 QSAR membership models

QSAR membership models specify assessment group memberships for active substances related to a specific health
effect (adverse outcome). Memberships should be derived externally from Quantitative Structure-Activity Relation-
ship (QSAR) models.
This module has as primary entities: Substances Effects
Output of this module is used by: Active substances

QSAR membership models data formats

Required data tables:
• QSAR membership models, to identify QSAR models for a specified health effect
• QSAR membership scores, to specify the memberships per substance per QSAR model

Note that only memberships 1 (include) and 0 (exclude) are allowed.

QSAR membership models

Substance membership models obtained from QSAR for a given (health) effect. The models are defined in the
membership models table, and substance specific memberships are specified in the QSAR memberships table.

QSAR membership models

This table contains the definitions of the QSAR membership models. Each model contains a id, name, an optional
description, and refers to its related health effect.
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Table 2.165: Table definition for QSARMembershipModels.
Name Type Description Aliases Required
id AlphaNumeric(50) The unique identification code

of the QSAR membership
model.

id, Model,
ModelCode,
idModel,
QSARModel,
idQSARModel,
QSAR-
Membership-
Model,
idQSAR-
Membership-
Model,
Membership-
Model,
idMembership-
Model

Yes

Name AlphaNumeric(100) The name of the QSAR
membership model.

Name No

Description AlphaNumeric(200) Description of the QSAR
membership model.

Description No

idEffect AlphaNumeric(50) The effect code. idEffect,
EffectId, Effect

Yes

Accuracy Numeric Accuracy of the QSAR
membership model.

Accuracy No

Sensitivity Numeric Sensitivity of the QSAR
membership model.

Sensitivity No

Specificity Numeric Specificity of the QSAR
membership model.

Specificity No

Reference AlphaNumeric(200) External reference(s) to
sources containing more
information about the QSAR
model.

References No

Table aliases: QSAR, QSARMembershipModels, QSARMembershipModel, QSARModels, QSARModel.

QSAR membership scores

Substance membership score according to the QSAR model.
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Table 2.166: Table definition for QSARMembershipScores.
Name Type Description Aliases Required
idQSAR-
Membership-
Model

AlphaNumeric(50) The id of the QSAR model. Model,
ModelCode,
idModel,
QSARModel,
idQSARModel,
QSAR-
Membership-
Model,
idQSAR-
Membership-
Model,
Membership-
Model,
idMembership-
Model

Yes

idSubstance AlphaNumeric(50) The code of the substance. idSubstance,
SubstanceId,
SubstanceCode,
Substance

Yes

Membership-
Score

Numeric QSAR membership score.
Value should be 1 for positive
membership, or 0 for negative
membership.

Membership-
Score,
Membership,
QSARScore,
Score

Yes

Table aliases: QSARMembershipScores, QSARMembershipScore, QSARMemberships, QSARMembership.

QSAR membership models as data

• QSAR membership models data formats

Inputs used: AOP networks

2.7 Kinetic modules

Kinetic models convert exposures or hazard characterisations from one or more external routes or compartments to an
internal (target) compartment. The reverse conversion from internal to external can also be made (reverse dosimetry).
In a simple tier, kinetic models are specified as absorption factors. In a higher tier, physiologically based toxicokinetic
(PBTK) models of a specified type (currently available is the EuroMix generic PBTK model) are linked to MCRA.
Kinetic model instances for specific substances and test systems (e.g. cypermethrin in the rat) are specified with
parameter sets for the chosen kinetic model.

2.7.1 Kinetic models

External exposure can be from on more more exposure routes: oral (dietary or non-dietary), dermal or inhalation.
Internal exposure can be systemic or related to a specific compartment in a kinetic model. There are four tiers for
relating external to internal exposures (doses):

1. Assume 100% absorption: internal exposures are equal to external exposures.
2. Assume conservative absorption factors as suggested by EFSA ([4], [5]): oral and inhalation 100%, dermal

50%.
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3. Use externally provided absorption factors (absorption factors data tables).
4. Use one of the implemented kinetic models, with instances for specific substances defined in data table kinetic

model instances and model parameters specified in data table kinetic model instance parameters.
Given a chosen tier, the caculation will fall back to the next lower tier in case of missing data.
This module has as primary entities: Substances
Output of this module is used by: Exposures Hazard characterisations

Kinetic models data formats

Data tables:
• Absorption factors
• Kinetic model instances
• Kinetic model instance parameters

Kinetic models

Kinetic models may be specified as kinetic model instances that contain parameter specifications of built in kinetic
models or as simple absorption factors.

Kinetic model instances

Kinetic model instances.

Table 2.167: Table definition for KineticModelInstances.
Name Type Description Aliases Required
idModel-
Instance

AlphaNumeric(50) Unique identification code of
the kinetic model instance.

idModel-
Instance, Id,
Code

Yes

idModel-
Definition

KineticModelType Identifier of the kinetic model
definition for which this is an
instance.

idModel-
Definition,
ModelDefinition

Yes

idTestSystem AlphaNumeric(200) The species on which the
experiment was performed.

System,
TestSystem

Yes

idSubstance AlphaNumeric(50) Unique identification code of
substance, Default: valid for
all substances. Should be
omitted for parameters in the
class Physiological

idSubstance,
SubstanceId,
SubstanceCode,
Substance

No

Reference AlphaNumeric(100) Reference or author. References No

Table aliases: KineticModelInstances, KineticModelInstance.

Kinetic model instance parameters

Kinetic model parameters
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Table 2.168: Table definition for KineticModelInstanceParameters.
Name Type Description Aliases Required
idModel-
Instance

AlphaNumeric(50) Unique identification code of
the kinetic model instance to
which this parameter belongs

Id, Code Yes

Parameter AlphaNumeric(100) Name of the parameter in the
kinetic model.

Yes

Description AlphaNumeric Description of or reference
for the parameter values in
the kinetic model.

No

Value Numeric Mean. MEAN, mean Yes
Distribution-
Type

AlphaNumeric(20) Distribution. Distribution-
Type,
Distribution

No

CvVariability Numeric Variability. No
CvUncertainty Numeric Uncertainty. No

Table aliases: KineticModelInstanceParameters, KineticModelInstanceParameter.

Kinetic model absorption factors

Kinetic absorption factors

Table 2.169: Table definition for KineticAbsorptionFactors.
Name Type Description Aliases Required
idCompound AlphaNumeric(50) code of substance (must

correspond to values in id
column of Substances table)

idSubstance,
SubstanceId,
SubstanceCode,
Substance

No

Route AlphaNumeric(50) Non-dietary route or pathway,
use ‘Oral’, ‘Dermal’, or
‘Inhalation’ to specify the
route.

Route, Pathway No

Absorption-
Factor

Numeric absorption factor value Absorption-
Factor,
Factor

No

Table aliases: KineticAbsorptionFactors, KineticAbsorptionFactor, AbsorptionFactors, AbsorptionFactor.

Kinetic models settings
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Calculation settings

Table 2.170: Calculation settings for module Kinetic models.
Name Description
Default oral absorption factor
for non-dietary exposure

When there is no kinetic model and absorption factors are not
specified in file, non-dietary oral exposures (external doses) are
multiplied by this factor to determine the absorbed (internal) dose.

Default oral absorption factor
for dietary exposure

When there is no kinetic model and absorption factors are not
specified in file, dietary exposures (external doses) are multiplied
by this factor to determine the absorbed (internal) dose .

Default dermal absorption
factor for non-dietary exposure

When there is no kinetic model and absorption factors are not
specified in file, dermal exposures (external doses) are multiplied
by this factor to determine the absorbed (internal) dose.

Default inhalation absorption
factor for non-dietary exposure

When there is no kinetic model and absorption factors are not
specified in file, inhalation exposures (external doses) are
multiplied by this factor to determine the absorbed (internal) dose.

Number of days The number of days.
Number of events per day for
the ORAL dietary dose

The daily dose is administered in equal portions (dose / number of
events) per event.

Number of initial days skipped This period is skipped in the calculation of the mean internal
exposure.

Kinetic model Code Kinetic Model.
Use parameter variability When specified, use parameter variability.

Uncertainty settings

Table 2.171: Uncertainty settings for module Kinetic models.
Name Description
Resample kinetic model
parameter values

Specifies whether kinetic model parameter values are resampled.

Kinetic models as data

• Kinetic models data formats

Inputs used: Active substances

Available kinetic models

Physiologically based toxicokinetic (PBTK) models, or kinetic models for short, are mathematical representations of
the animal or human body aimed at describing and predicting the time course distribution of chemicals in tissues and
organs. Those internal dose metrics can usefully replace external exposure dose in the derivation of the quantitative
dose-response relationships and following risk assessments. PBTK models can simulate both internal doses from
exposure scenarios (forward dosimetry) and external dose from biomonitoring data (reverse dosimetry).
The following generic PBTK models are currently implemented in MCRA:

• EuroMix generic PBTK model [12].
• bisphenol model ETHZ [25].
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EuroMix Generic PBTK model v6

Cosmos version 6 (received 3/27/2019)

Table 2.172: Exposure routes (forcings)
Id Description Unit Order
Dietary Dietary exposure mmoles 0
Dermal Dermal exposure mmoles 1
Inhalation Inhalatory exposure mmoles 2

Table 2.173: Output
Id Description ScalingFactor Multiplication-

Factor
Unit Order

CTotal Total concentration mM 0
CVen Venous blood

concentration
scVBlood 0.66667 mM 1

CArt Arterial blood
concentration

scVBlood 0.33333 mM 2

CFat Fat (adipose) tissue
concentration

scVFat mM 3

CPoor Poorly perfused
tissue (muscle)
concentration

mM 4

CRich Richly perfused
tissue (viscera)
concentration

scVRich mM 5

CLiver Liver concentration scVLiver mM 6
CSkin_u Viable unexposed

skin concentration
mM 7

CSkin_e Viable exposed skin
concentration

BSA, Height_vs,
fsA_exposed

mM 8

CSkin_sc_u Skin unexposed
stratum corneum
concentration

mM 9

CSkin_sc_e Skin exposed
stratum corneum
concentration

BSA, Height_vs,
fsA_exposed

mM 10
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Table 2.174: Input
Id Description Unit Type Order
BM Body mass kg Physiological 0
BSA Body surface area

(internally scaled by
an allometric scaling
factor s =
70/BM^0.3)

dm2 Physiological 1

scVFat Fat as fraction of
total body volume

Physiological 2

scVRich Richly perfused
tissues (viscera) as
fraction of total
body volume

Physiological 3

scVLiver Liver as fraction of
total body volume

Physiological 4

scVBlood Blood as fraction of
total body volume

Physiological 5

Height_sc Skin thickness decimeter Physiological 6
Height_vs Viable skin Physiological 7
scFBlood Total blood flow per

unit mass
L/h/kg Physiological 8

scFFat Fat fraction of total
blood flow going to
compartments

Physiological 9

scFPoor Poorly perfused
tissues (muscles)
fraction of total
blood flow going to
compartments

Physiological 10

scFLiver Liver fraction of
total blood flow
going to
compartments

Physiological 11

scFSkin Skin fraction of total
blood flow going to
compartments

Physiological 12

Falv Alveolar ventilation
rate

L/h Physiological 13

mic Microsomal proteins
content

mg/gr liver Physiological 14

Kp_sc_vs Diffusion rate from
stratum corneum to
viable skin

decimeter/h Metabolic 22

Ke Renal excretion rate L/h Metabolic 23
Michaelis Flag for

Michaelis-Menten vs
linear metabolism (0
= linear)

Metabolic 24

Vmax Maximum rate of
metabolism

mmoles/h/L liver Metabolic 25

Km Michaelis-Menten
constant for
metabolism

mM Metabolic 26

CLH Hepatic metabolic
clearance

Metabolic 27

fub Unbound fraction in
blood

Metabolic 28

Frac Fraction absorbed by
the gut

Metabolic 29

kGut Oral 1st order
absorption rate
constant

1/h Metabolic 30

fSA_exposed Fraction of skin
surface area actually
exposed

Metabolic 35
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Model aliases: Cosmos6, CosmosV6.

EuroMix Generic PBTK model v5

Cosmos version 5 (adapted 9/11/2018)

Table 2.175: Exposure routes (forcings)
Id Description Unit Order
Dietary Dietary exposure mmoles 0
Dermal Dermal exposure mmoles 1
Inhalation Inhalatory exposure mmoles 2

Table 2.176: Output
Id Description ScalingFactor Multiplication-

Factor
Unit Order

CVen Venous blood scVBlood 0.66667 mM 0
CArt Arterial blood scVBlood 0.33333 mM 1
CFat Fat tissues scVFat mM 2
CPoor Muscle tissues mM 3
CRich Viscera scVRich mM 4
CLiver Liver scVLiver mM 5
CSkin_u Viable skin,

unexposed
mM 6

CSkin_e Viable skin, exposed BSA, Height_vs,
fsA_exposed

mM 7

CSkin_sc_u Skin stratum
corneum, unexposed

mM 8

CSkin_sc_e Skin stratum
corneum, exposed

BSA, Height_vs,
fsA_exposed

mM 9
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Table 2.177: Input
Id Description Unit Type Order
BM Body mass kg Physiological 0
BSA Body skin surface

area
dm2 Physiological 1

scVFat Fat as fraction of
total body volume

Physiological 2

scVRich Richly perfused
tissues (viscera) as
fraction of total
body volume

Physiological 3

scVLiver Liver as fraction of
total body volume

Physiological 4

scVBlood Blood as fraction of
total body volume

Physiological 5

Height_sc Skin thickness decimeter Physiological 6
Height_vs Viable skin Physiological 7
scFBlood Total blood flow per

unit mass
L/h/kg Physiological 8

scFFat Fat fraction of total
blood flow going to
compartments

Physiological 9

scFPoor Poorly perfused
tissues (muscles)
fraction of total
blood flow going to
compartments

Physiological 10

scFLiver Liver fraction of
total blood flow
going to
compartments

Physiological 11

scFSkin Skin fraction of total
blood flow going to
compartments

Physiological 12

Falv Alveolar ventilation
rate

L/h Physiological 13

mic Microsomal proteins
content

mg/gr liver Physiological 14

PCAir Partition coefficient:
blood over air

Partition coefficient 15

Kp_sc_vs Diffusion rate from
stratum corneum to
viable skin

decimeter/h Metabolic 22

Ke Renal excretion rate L/h Metabolic 23
Michaelis Flag for

Michaelis-Menten vs
linear metabolism (0
= linear)

Metabolic 24

Vmax Maximum rate of
metabolism

mmoles/h/L liver Metabolic 25

Km Michaelis-Menten
constant

mM Metabolic 26

CLH Hepatic clearance Metabolic 27
fup Unbound fraction in

blood
Metabolic 28

Frac Fraction absorbed by
the gut

Metabolic 29

kGut Oral 1st order
absorption rate
constant

1/h Metabolic 30

fSA_exposed Fraction of skin
surface area actually
exposed

Metabolic 35
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Model aliases: Cosmos4, CosmosV4, Cosmos5, CosmosV5.

Generic Model BPA

Generic model Cecile Karrer 23 juli 2018

Table 2.178: Exposure routes (forcings)
Id Description Unit Order
Dietary Dietary exposure nmoles 0
Oral Oral exposure nmoles 1
Dermal Dermal exposure nmoles 2
Inhalation Inhalation exposure nmoles 3

Table 2.179: Output
Id Description ScalingFactor Multiplication-

Factor
Unit Order

CPlasmaOut Concentration in
plasma

nmol/L 0

CGonadOut Concentration in
gonads

nmol/L 1

AurinebpaOut Cumulative
excretion of BPA in
urine

nmol/L 2

AurinegOut Cumulative
excretion of BPA-g
in urine

nmol/L 3

AurineTotalOut Cumulative
excretion of BPA
and metabolites in
urine

nmol/L 4

Table 2.180: Input
Id Description Unit Type Order
BW Bodyweight kg Physiological 0
QCC Cardiac output L/min Physiological 1
QgonadC Fractional blood

flow to gonads
Physiological 2

QliverC Fractional blood
flow to liver

Physiological 3

QfatC Fractional blood
flow to fat tissue

Physiological 4

QbrainC Fractional blood
flow to brain

Physiological 5

QskinC Fractional blood
flow to skin

Physiological 6

QmuscleC Fractional blood
flow to gonads

Physiological 7

VplasmaC Fractional volume of
plasma

Physiological 8

VfatC Fractional volume of
fat tissue

Physiological 9

VliverC Fractional volume of
liver tissue

Physiological 10

Continued on next page

2.7. Kinetic modules 199



MCRA Documentation, Release 9.0

Table 2.180 – continued from previous page
Id Description Unit Type Order
VbrainC Fractional volume of

brain tissue
Physiological 11

VskinC Fractional volume of
skin tissue

Physiological 12

VgonadC Fractional volume of
gonads

Physiological 13

VmuscleC Fractional volume of
muscle tissue

Physiological 14

VrichC Fractional volume of
richly perfused
tissue

Physiological 15

VbodygC Distribution volume
of BPA-g

Physiological 16

MW Molecular weight g/mol Chemical property 18
pliver Partition coefficient

liver to blood
Partition coefficient 19

pfat Partition coefficient
fat to blood

Partition coefficient 20

pslow Partition coefficient
slowly perfused
tissue to blood

Partition coefficient 21

prich Partition coefficient
richly perfused
tissue to blood

Partition coefficient 22

pgonad Partition coefficient
gonads to blood

Partition coefficient 23

pbrain Partition coefficient
brain to blood

Partition coefficient 24

pskin Partition coefficient
skin to blood

Partition coefficient 25

geC Gastric emptying 1/h/kg bw^-0.25 Metabolic 26
k0C Oral uptake from the

stomach into the
liver

1/h/kg bw^-0.25 Metabolic 27

k1C Oral uptake from the
small intestine into
the liver

1/h/kg bw^-0.25 Metabolic 28

k4C Fecal elimination
from small intestine
after oral
administration

1/h/kg bw^-0.25 Metabolic 29

kGIingC Transport of
glucuronide from
enterocytes into
serum

1/h/kg bw^-0.25 Metabolic 30

kGIinsC Transport of sulfate
from enterocytes
into serum

1/h/kg bw^-0.25 Metabolic 31

kmgutg Km of
Glucuronidation in
the gut

nM Metabolic 32

vmaxgutgC Vmax of
Glucuronidation in
the gut

nmol/h/kg bw Metabolic 33

Continued on next page
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Table 2.180 – continued from previous page
Id Description Unit Type Order
fgutg Correction factor of

glucuronidation in
the gut

Metabolic 34

kmguts Km of Sulfation in
the gut

nM Metabolic 35

vmaxgutsC Vmax of Sulfation in
the gut

nmol/h/kg bw Metabolic 36

fguts Correction factor of
sulfation in the gut

Metabolic 37

met1g Fraction of
glucuronide in the
liver taken up
directly into serum
(the rest undergoes
EHR)

Metabolic 38

met1s Fraction of sulfate in
the liver taken up
directly into serum

Metabolic 39

enterocytes Sum of enterocytes
weights in
duodenum, jejunum
and ileum

L Metabolic 40

kmliver Km of
Glucuronidation in
the liver

nM Metabolic 41

vmaxliverC Vmax of
Glucuronidation in
the liver

nmol/h/g liver Metabolic 42

fliverg Correction factor of
glucuronidation in
the liver

Metabolic 43

kmlivers Km of Sulfation in
the liver

nM Metabolic 44

vmaxliversC Vmax of Sulfation in
the liver

nmol/h/g liver Metabolic 45

flivers Correction factor of
sulfation in the liver

Metabolic 46

EHRtime Time until EHR
occurs

h Metabolic 47

EHRrateC EHR of glucuronide 1/h/kg bw^-0.25 Metabolic 48
k4C_IV Fecal elimination of

glucuronide from the
EHR compartment

1/h/kg bw^-0.25 Metabolic 49

kurinebpaC Clearance, urine
excretion of parent
compound

L/h/kg bw^0.75 Metabolic 50

kurinebpagC Clearance, urine
excretion of
glucuronide

L/h/kg bw^0.75 Metabolic 51

kurinebpasC Clearance, urine
excretion of sulfate

L/h/kg bw^0.75 Metabolic 52

vreabsorptiong-
C

Vmax for renal
reabsorption of
glucuronide

nmol/h/kg bw^0.75 Metabolic 53

Continued on next page
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Table 2.180 – continued from previous page
Id Description Unit Type Order
vreabsorptionsC Vmax for renal

reabsorption of
sulfate

nmol/h/kg bw^0.75 Metabolic 54

kreabsorptiong Km for renal
reabsorption of
glucuronide

nM Metabolic 55

kreabsorptions Km for renal
reabsorption of
sulfate

nM Metabolic 56

kenterobpagC EHR of parent
compound due to
biliary excretion of
glucuronide

1/h/kg bw^-0.25 Metabolic 57

kenterobpasC EHR of parent
compound due to
biliary excretion of
sulfate

1/h/kg bw^-0.25 Metabolic 58

EoA_O Extent of oral
absorption

Physiological 61

period_O uptake period h External 63
t0_O time point at which

dosing starts
h External 65

EoA_D Extent of dermal
absorption from TP

Physiological 68

aHL_D Half-life for dermal
penetration

h External 70

period_D Uptake period
dermal exposure
from TP

h External 72

t0_D Time points at which
dermal dosing from
TP starts

h External 74

EoA_D2 Extent of dermal
absorption from
PCPs

Physiological 77

aHL_D2 Half-life for dermal
penetration from
PCPs

h External 79

period_D2 Uptake period
dermal exposure
from PCPs

h External 81

t0_D2 Time points at which
dermal dosing from
PCPs starts

h External 83

BW075 BW^0.75 kg^0.75 External 103
BW025 BW^0.25 kg^0.25 External 104

Model aliases: PBPKModel_BPA, PBPKModelBPA, ModelBPA, BPA.

Note: Additional kinetic models can be implemented, please contact the MCRA administrator.
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EuroMix generic PBTK model

Reference: Tebby et al, 2019: [12]
In MCRA updated versions (version 4b, 6) of the PBTK model developed at INERIS in the framework of the COS-
MOS project is used. The model describes the distribution of chemicals in venous blood, arterial blood, adipose
tissues, poorly perfused tissues (muscles), gut lumen, liver, richly perfused tissues (other viscera), and skin. Each of
those is described as a compartment (homogeneous virtual volume) in which distribution is instantaneous and limited
only by the incoming blood flow or rate of entry in the compartment. Exposure can occur through the dermal route,
ingestion or inhalation. The absorbed molecules can be excreted to urine, exhaled through the lung, or metabolized
in liver.

Figure 2.36: Schematic representation of the EuroMix Generic PBTK model.

The EuroMix generic PBTK model is coded as a set of ordinary differential equations. There is one such equation
per time-dependent chemical quantity of the model (so-called state variables). There are 13 state variables in the
model: the quantity of chemical in venous blood (𝑄𝑣𝑒𝑛), in arterial blood (𝑄𝑎𝑟𝑡), in adipose tissues (𝑄𝑓𝑎𝑡), in poorly
perfused tissues (𝑄𝑝), in well perfused tissues (𝑄𝑟), in liver (𝑄𝑙𝑖𝑣), in unexposed skin (𝑄𝑠,𝑢), in exposed skin (𝑄𝑠,𝑒),
in the stratum corneum of unexposed skin (𝑄𝑠𝑐,𝑢), in exposed stratum corneum (𝑄𝑠𝑐,𝑒), in gut lumen (𝑄𝑔𝑢𝑡), the
quantity excreted to urine (𝑄𝑒𝑥), and the quantity metabolized (𝑄𝑚𝑒𝑡). The model can predict, as a function of time,
for given oral, dermal and/or inhalation exposures, all the above quantities and the corresponding concentrations as
a function of time. Concentrations are obtained by dividing quantities by compartment volumes (cited: Bois, Tebby
& Brochot).
In Figure 2.37 a time course of the internal substance amount (𝜇𝑔) for Clothianidin in the liver is shown. For 50
consecutive days a bolus per day is submitted. The red line shows the substance amount varying over time. The green
line displays the average of the peaks representing acute exposure, the blue line displays the steady state representing
chronic exposure, all after skipping a nonstationary period of 10 days (the vertical black line).
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From the substance amount, a concentration is computed by dividing it by the total compartment weight (i.e., the
mass/volume of the compartment/organ).
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Figure 2.37: Time course of exposure (𝜇𝑔) for Clothianidin in the liver (EuroMix generic PBTK model version 6).

In Figure 2.38, for a large number of individuals the internal exposure (acute, green dots) in the liver is plotted versus
the external exposure (𝜇𝑔/𝑘𝑔𝑏𝑤). The diagonal represents the 1:1 ratio of internal vs external exposure.

Bisphenol model

Reference: Karrer et al. 2019: [25]
‘Structural analogs such as the bisphenols S, F, and AF (BPS, BPF, BPAF) are used to replace the endocrine dis-
rupting chemical bisphenol A (BPA), but they exert estrogenic effects in the same order of magnitude. In order to
investigate the consequences of BPA restrictions, we assessed the cumulative risk from BPA, BPS, BPF, and BPAF in
Europe before and after the first BPA restrictions in 2011. We modeled external exposures from food, personal care
products (PCPs), thermal paper, and dust, using the models MCRA and PACEM for food and PCPs, respectively.
We calculated internal concentrations of unconjugated BPs with substance-specific PBPK models and cumulated
concentrations by taking into account relative estrogenic potencies. Average cumulative exposure to unconjugated
BPs was 3.8 and 2.1 ng/kg bw/day before and after restrictions, respectively. The decline was mostly caused by the
replacement of BPA with BPS in thermal paper. Therefore, the margins of exposure (MOEs) for estrogenic effects
were mostly higher after the restrictions. However, in high uncertainty percentiles the MOEs were partly lower than
before (e.g. the MOEs for the uncertainty P97.5 of the variability P99 were 2.6 and 1.9 before and after restrictions,
respectively), which shows the higher uncertainty around exposures for substitutes compared to BPA.’
Abstract: Linking probabilistic exposure and pharmacokinetic modeling to assess the cumulative risk from the bisphe-
nols BPA, BPS, BPF, and BPAF for Europeans. Authors: Cecile Karrer, Waldo de Boer, Christiaan Delmaar, Yaping
Cai, Amélie Crépet, Konrad Hungerbühler, Natalie von Goetz
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Figure 2.38: Internal versus external exposure for Clothianidin in the liver (EuroMix Generic PBTK model version
6).
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Figure 2.39: Graphical abstract ‘Linking probabilistic exposure and pharmacokinetic modeling to assess the cumu-
lative risk from the bisphenols BPA, BPS, BPF, and BPAF for Europeans.’
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2.8 Risk modules

Exposures and hazard characterisations are compared in risk estimates.

2.8.1 Risks

Risks (health impacts) are quantified by comparing exposures and hazard characterisations at the chosen level (external
or internal) via margins of exposure (MOE) or more generalised or integrated margins of exposure (IMOE). In
addition, risks can be assessed from a plot of hazard characterisations vs. exposures.
This module has as primary entities: Substances Effects Populations

Risks calculation

‘A method is proposed for integrated probabilistic risk assessment where exposure assessment and hazard charac-
terization are both included in a probabilistic way. The aim is to specify the probability that a random individual
from a defined (sub)population will have an exposure high enough to cause a particular health effect of a predefined
magnitude, the critical effect size (CES). The exposure level that results in exactly that CES in a particular person is
that person’s individual critical effect dose (ICED). Individuals in a population typically show variation, both in their
individual exposure (IEXP) and in their ICED. Both the variation in IEXP and the variation in ICED are quantified
in the form of probability distributions. Assuming independence between both distributions, they are combined (by
Monte Carlo) into a distribution of the individual margin of exposure (IMoE). The proportion of the IMoE dis-
tribution below unity is the probability of critical exposure (PoCE) in the particular (sub)population. Uncertainties
involved in the overall risk assessment (i.e., both regarding exposure and effect assessment) are quantified using
Monte Carlo and bootstrap methods. This results in an uncertainty distribution for any statistic of interest, such as
the probability of critical exposure (PoCE). The method is illustrated based on data for the case of dietary exposure
to the organophosphate acephate. We present plots that concisely summarize the probabilistic results, retaining the
distinction between variability and uncertainty. We show how the relative contributions from the various sources of
uncertainty involved may be quantified.’ (abstract from [45]).
A statistical model is presented extending the integrated probabilistic risk assessment (IPRA) model of van der Voet
and Slob (2007) The aim is to characterise the health impact due to one or more chemicals present in food causing
one or more health effects. For chemicals with hardly any measurable safety problems we propose health impact
characterisation by margins of exposure. In this probabilistic model not one margin of exposure is calculated, but
rather a distribution of individual margins of exposure (IMoE) which allows quantifying the health impact for small
parts of the population. A simple bar chart is proposed to represent the IMoE distribution and a lower bound (IMoEL)
quantifies uncertainties in this distribution. It is described how IMoE distributions can be combined for dose-additive
compounds and for different health effects. Health impact assessment critically depends on a subjective valuation
of the health impact of a given health effect, and possibilities to implement this health impact valuation step are
discussed. Examples show the possibilities of health impact characterisation and of integrating IMoE distributions.
The paper also includes new proposals for modelling variable and uncertain factors describing food processing effects
and intraspecies variation in sensitivity.’ (abstract from: van der Voet et al, 2009 [46]).

Risks settings
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Bromuconazole 

Cyproconazole 

Difenoconazole 

Epoxiconazole 

Fenbuconazole 

Hexaconazole 

Ipconazole 

Metconazole 

Propiconazole 

Tebuconazole 

Tetraconazole 

Triticonazole 

Prothioconazole 

Cyproconazole (Multiple (Inverse Hazard Index))

0.1 10 1000 100000 1e+07

Individual margin of exposure

Figure 2.40: Individual Margin of Exposure (IMoE) plot for multiple chemicals.

Calculation settings

Table 2.181: Calculation settings for module Risks.
Name Description
Health effect type Specifies whether the health effect is a risk (negative) or benefit

(positive).
Report as Hazard Index Report margin of exposure in terms of hazard index (1/MOET)

(Risks).
Left margin safety plot The left margin of the safety plot (Risks).
Right margin safety plot The right margin of the safety plot (Risks).
Show equivalent animal dose
output

Specifies whether equivalent animal doses should be reported in
the output.

Threshold safety plot The threshold for the margin of exposure e.g., 1 (below unity) or
hazard index e.g., 1 (above unity).

Inclusion percentage variability
interval

The percentage of the variability distribution to include in
intervals for exposure, hazard and IMoE estimates (e.g. 90)
(Risks).

Number of plot labels Number of labels to plot in hazard vs exposure plot.

Calculation of risks

Risks (health impacts) are quantified by comparing exposures and hazard characterisations at the chosen level (external
or internal) via margins of exposure (MOE) or more generalised or integrated margins of exposure (IMOE).

• Risks calculation

Inputs used: Exposures Hazard characterisations
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Reference substance: Cyproconazole

Figure 2.41: Example of MCRA Hazard vs. Exposure plot for multiple chemicals. 95% bivariate confidence areas
for target hazard dose distribution ICED and exposure distribution IEXP. Inner ellipses express variability, outer
ellipses uncertainty.
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Settings used
• Calculation Settings

Risks are expressed as (individual) margins of exposure and as a probability to exceed a reference value (e.g. 1 or 100),
comparing the exposures and the hazard characterisation for individuals or individual-days in a population. Exposures,
hazard characterisations and risks can be acute or chronic. The default unit for exposures and hazard characterisations
is 𝜇𝑔/𝑘𝑔𝐵𝑊/𝑑𝑎𝑦, but this can be changed by choosing non-default units for consumptions, concentrations and/or
body weight.
The basic calculation is a graphical representation of hazard characterisations versus exposures.
In a low tier, the calculated ratio is equal to the traditional Margin Of Exposure (MOE). By including assessment
factors in the hazard characterisations, the MOE can be generalised to account internally for e.g. interspecies and
intraspecies uncertainty, making 1 the relevant limit for risk assessment. By using probabilistic tiers for exposure
and hazard characterisation, the MOE is further generalised to a distribution of Integrated Margins Of Exposure
(IMOEs), as described in [45] and [46].
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Table 2.182: Overview of MCRA modules.
Category Module Inputs Used by Description
Primary
entities

Foods Consump-
tions, Market
shares, Food
recipes, Con-
centrations,
Processing
factors, Unit
variability
factors,
Occurrence
patterns,
Substance
authorisa-
tions,
Concentra-
tion limits,
Concentra-
tion models,
Foods as
measured,
Focal food
concentra-
tions, Total
diet study
sample com-
positions,
Food extrap-
olations,
Food
conversions,
Consump-
tions by food
as measured,
Dietary
exposures
with
screening,
Dietary
exposures,
Exposures,
Exposure
mixtures.

Foods are uniquely defined
sources of dietary exposure to
chemical substances. Foods
may refer to 1) foods-as-eaten:
foods as coded in food
consumption data (e.g. pizza);
2) foods-as-measured: foods as
coded in concentration data
(e.g. wheat); 3) any other type
of food (e.g. ingredients, e.g.
flour).

Continued on next page
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Table 2.182 – continued from previous page
Category Module Inputs Used by Description

Substances Concentra-
tions,
Processing
factors, Unit
variability
factors,
Occurrence
patterns,
Substance
authorisa-
tions,
Substance
conversions,
Concentra-
tion limits,
Concentra-
tion models,
Foods as
measured,
Focal food
concentra-
tions, Food
conversions,
Consump-
tions by food
as measured,
Dietary
exposures
with
screening,
Dietary
exposures,
Non-dietary
exposures,
Exposures,
Exposure
mixtures,
Human
monitoring
data,
Human
monitoring
analysis,
QSAR
membership
models,
Molecular
docking
models,
Kinetic
models,
Active
substances,
Relative
potency
factors,
Hazard
characteri-
sations,
Points of
departure,
Dose
response
models,
Dose
response
data,
Inter-species
conversions,
Intra species
factors,
Risks.

Substances are chemical
entities that can refer to: 1)
active substances such as
investigated in toxicology; 2)
measured substances such as
defined in specific analytical
methods. MCRA assessments
can have one or more
substances as the scope. When
more than one substance is
specified, there is an option to
perform a cumulative
assessment. In that case one of
the substances has to be
indicated as the index/reference
substance, and results will be
expressed in equivalents of the
index substance.

Continued on next page
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Table 2.182 – continued from previous page
Category Module Inputs Used by Description

Effects Concentra-
tion models,
Dietary
exposures
with
screening,
Dietary
exposures,
Exposure
mixtures,
QSAR
membership
models,
Molecular
docking
models,
Active
substances,
Relative
potency
factors,
Hazard
characteri-
sations,
Points of
departure,
Effect repre-
sentations,
Inter-species
conversions,
Intra species
factors, AOP
networks,
Risks.

Effects are biological or
toxicological consequences for
human health, that may result
from chemical exposure and
are the focus of hazard or risk
assessment.

Populations Consump-
tions,
Consump-
tions by food
as measured,
Dietary
exposures,
Non-dietary
exposures,
Exposures,
Human
monitoring
analysis,
Risks.

Populations are groups of
human individuals that are the
scope of exposure or risk
assessments. Optional
descriptors of populations are
location (e.g. a country), time
period (start date, end date),
age range and gender.
Example: the French
population in 2005-2007 of
women of child-bearing age
(18-45 yr).

Continued on next page
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Table 2.182 – continued from previous page
Category Module Inputs Used by Description

Test systems Responses,
Dose
response
models,
Dose
response
data.

Test systems are biological or
artificial systems used for
assessing hazard in relation to
chemical exposure from
substances in varying doses.
Test systems may refer to 1)
in-vivo test systems (e.g. a rat
90-day study, a human
biomonitoring study); 2)
in-vitro test systems (e.g.
HepaRG cells).

Responses Test systems. Dose
response
models,
Dose
response
data, Effect
representa-
tions.

Responses are measurable
entities in test systems.
Responses are used to
represent effects (see effect
representations) and their
measured values are collected
in dose response data.

Consumption Consump-
tions

Populations,
Foods.

Food
conversions,
Consump-
tions by food
as measured.

Consumptions data are the
amounts of foods consumed on
specific days by individuals in a
food consumption survey. For
acute exposure assessments,
the interest is in a population of
person-days, so one day per
individual may be sufficient.
For chronic exposure
assessments, the interest is in a
population of person, so
preferably two or more days
per individual are needed.

Market
shares

Foods. Food
conversions.

Market shares data specify for
a given food, percentages of
more specific foods (subfoods,
e.g. brands) representing their
share in a market. Market
shares are used when
consumption data are available
at a more generalised level than
concentration data.

Food recipes Foods. Food
conversions.

Food recipes data specify the
composition of specific foods
(typically: foods-as-eaten) in
terms of other foods
(intermediate foods or
foods-as-measured) by
specifying proportions in the
form of a percentage.

Continued on next page
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Table 2.182 – continued from previous page
Category Module Inputs Used by Description
Occurrence Concentra-

tions
Foods,
Substances,
Focal food
concentra-
tions, Food
extrapola-
tions,
Substance
conversions,
Relative
potency
factors,
Substance
authorisa-
tions, Active
substances,
Concentra-
tion
limits.

Occurrence
patterns,
Concentra-
tion models,
Foods as
measured.

Concentrations data are
analytical measurements of
chemical substances occurring
in food samples. In their
simplest form, concentration
data can just be used as
provided by datasets.
Optionally, concentrations data
can be manipulated for active
substances, extrapolated to
other foods, and/or default
values can be added for water.

Processing
factors

Foods,
Substances.

Food
conversions,
Dietary
exposures.

Processing factors are
multiplication factors to derive
the concentration in a
processed food from the
concentration in an
unprocessed food and can be
specified for identified
processing types (e.g., cooking,
washing, drying). Processing
factors are primarily used in
dietary exposure assessments
to correct for the effect of
processing on substance
concentrations in dietary
exposure calculations.

Unit
variability
factors

Foods,
Substances.

Dietary
exposures.

Unit variability factors specify
the variation in concentrations
between single units of the
same food, which have been
put together in a mixture
sample on which the
concentration measurements
have been made. Unit
variability factors are used to
account for the fact that
concentration data often relate
to composite samples, whereas
an acute risk may result from
single food units.

Continued on next page
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Table 2.182 – continued from previous page
Category Module Inputs Used by Description

Occurrence
patterns

Foods,
Substances,
Concentra-
tions,
Substance
authorisa-
tions, Active
substances.

Concentra-
tion
models.

Occurrence patterns (OPs) are
the combinations (or mixtures)
of substances that occur
together on foods and the
frequencies of these mixtures
occurring per food, expressed
in percentages. In the context
of pesticides, occurrence
patterns can be associated with
agricultural use percentages.
Occurrence patterns are
relevant to account for
co-occurrence of active
substances in exposed
individuals. Occurrence
patterns may be specified as
data or modelled based on
observed patterns of positive
concentrations.

Substance
authorisa-
tions

Foods,
Substances.

Concentra-
tions,
Occurrence
patterns.

Substance authorisations
specify which food/substance
combinations are authorised
for (agricultural) use. If
substance authorisations are
used, then only the
food/substance combinations
that are specified in the data
are assumed to be authorised
and all other combinations are
assumed to be not authorised.
This information may, for
instance, be used to determine
whether concentration
measurements below the LOR
could be assumed true zeros.
I.e., if a food/substance
combinations is assumed to be
unauthorised, then the LOR
may be assumed to be a zero.

Substance
conversions

Substances,
Active
substances.

Concentra-
tions.

Substance conversions specify
how measured substances are
converted to active substances,
which are the substances
assumed to cause health effects.
In the pesticide legislation such
measured substances and the
substance conversion rules are
known as residue definitions.

Continued on next page
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Table 2.182 – continued from previous page
Category Module Inputs Used by Description

Concentra-
tion
limits

Foods,
Substances.

Concentra-
tions,
Concentra-
tion models,
Foods as
measured.

Concentration limits specify
(legal) limit values for
substance concentrations on
foods and are sometimes used
as conservative values for
concentration data. In the
framework of pesticides the
legal Maximum Residue Limit
(MRL) is the best known
example.

Concentra-
tion
models

Concentra-
tions,
Concentra-
tion limits,
Foods as
measured,
Occurrence
patterns,
Relative
potency
factors.

Dietary
exposures
with
screening,
Dietary
exposures.

Concentration models are
distributional models of
substance concentrations on
foods. They describe both the
substance presence (yes/no,
with no representing an
absolute zero concentration)
and the substance
concentrations. Concentration
models are specified per
food/substance combination.

Foods as
measured

Concentra-
tions,
Concentra-
tion
limits.

Concentra-
tion models,
Food
conversions.

Foods as measured are foods
within the foods scope for
which concentration data of
substances are available (or
expected).

Focal food
concentra-
tions

Foods,
Substances.

Concentra-
tions.

In some cases the attention in
an assessment is on a specific
food (focal food), against the
background of other foods.
Focal food concentrations are
separate concentration data for
one or more focal food
commodities, that will take the
place of any other
concentration data for the focal
food in the ordinary
concentration data.

Total diet
study sample
compositions

Foods. Food
conversions.

Total diet study sample
compositions specify the
composition of mixed food
samples, such as used in a total
diet study (TDS), in terms of
their constituting foods.

Food extrap-
olations

Foods. Concentra-
tions, Food
conversions.

Food extrapolations data
specify which foods (data rich
foods) can be used to impute
concentration data for other
foods with insufficient data
(data poor foods).

Continued on next page
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Table 2.182 – continued from previous page
Category Module Inputs Used by Description
Exposure Food

conversions
Consump-
tions, Foods
as measured,
Processing
factors,
Food recipes,
Market
shares, Food
extrapola-
tions, Total
diet study
sample com-
positions,
Active
substances.

Consump-
tions by food
as measured.

Food conversions relate
foods-as-eaten, as found in the
consumption data, to
foods-as-measured, which are
the foods for which
concentration data are
available. A food-as-eaten can
be linked to one, or multiple
food-as-measured using
various conversion steps (e.g.,
using food recipes to translate a
composite food to its
ingredients, or using processing
information to relate a
processed food to its
unprocessed form). There are
several types of conversion
steps, and a conversion path
may comprise multiple
conversion steps between a
food-as-eaten and a
food-as-measured.

Consump-
tions by food
as measured

Consump-
tions, Food
conversions.

Dietary
exposures
with
screening,
Dietary
exposures.

Consumptions by food as
measured are consumptions of
individuals expressed on the
level of the foods for which
concentration data are available
(i.e., the foods-as-measured).
These are calculated from
consumptions of
foods-as-eaten and food
conversions that link the
foods-as-eaten amounts to
foods-as-measured amounts.

Dietary
exposures
with
screening

Consump-
tions by food
as measured,
Concentra-
tion models,
Active
substances,
Relative
potency
factors.

Dietary
exposures.

Dietary exposures with
screening are just dietary
exposures, but the calculation
includes a prior screening step
to identify the main risk drivers
(food-substance combinations).
This allows computations with
more substances by suppressing
some details for less important
food-substance combinations.

Continued on next page
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Table 2.182 – continued from previous page
Category Module Inputs Used by Description

Dietary
exposures

Consump-
tions by food
as measured,
Concentra-
tion models,
Processing
factors, Unit
variability
factors,
Dietary
exposures
with
screening,
Active
substances,
Relative
potency
factors.

Exposures. Dietary exposures are the
amounts of substances,
expressed per kg bodyweight
or per individual, to which
individuals in a population are
exposed from their diet per
day. Depending on the
exposure type, dietary
exposures can be
short-term/acute exposures and
then contain exposures for
individual-days, or they can be
long-term/chronic exposures,
in which case they represent
the average exposure per day
over an unspecified longer time
period.

Non-dietary
exposures

Populations,
Substances,
Active
substances.

Exposures. Non-dietary exposures are the
amounts of substances to which
individuals in a population are
exposed via any of three
non-dietary routes: dermal,
inhalation or oral, per day.

Exposures Dietary
exposures,
Non-dietary
exposures,
Active
substances,
Relative
potency
factors,
Kinetic
models.

Exposure
mixtures,
Human
monitoring
analysis,
Risks.

Exposures are amounts of
substances, typically expressed
per mass unit and per day, to
which individuals in a
population are exposed at a
chosen target level. This target
level may be external exposure
(dietary exposure, expressed
per unit body weight, or per
person) or internal exposure
(expressed per unit organ
weight). Internal exposures
may be aggregated from
dietary and non-dietary
exposures using either
absorption factors or kinetic
models to translate the external
exposures to internal
exposures. Exposures can be
short-term/acute exposures and
then contain exposures for
individual-days, or they can be
long-term/chronic exposures,
in which case they represent
the average exposure per day
over an unspecified longer time
period.

Continued on next page
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Table 2.182 – continued from previous page
Category Module Inputs Used by Description

Exposure
mixtures

Exposures. Exposure mixtures are
mixtures of substances that
contribute relatively much to
the overall cumulative exposure
(potential risk drivers).

Human
monitoring
data

Substances. Human
monitoring
analysis.

Human monitoring data
quantify substance
concentrations found in
humans collected in human
monitoring surveys.

Human
monitoring
analysis

Human
monitoring
data,
Exposures.

Human monitoring analysis
compares observed human
monitoring data with
predictions made for the same
population of individuals from
dietary survey data,
concentration data and
(optionally) non-dietary
exposure data.

In-silico QSAR
membership
models

Substances,
Effects, AOP
networks.

Active
substances.

QSAR membership models
specify assessment group
memberships for active
substances related to a specific
health effect (adverse
outcome). Memberships
should be derived externally
from Quantitative
Structure-Activity Relationship
(QSAR) models.

Molecular
docking
models

Substances,
Effects, AOP
networks.

Active
substances.

Molecular docking models
specify binding energies for
substances in specific
molecular docking models
related to a specific health
effect (adverse outcome).

Kinetic Kinetic
models

Substances,
Active
substances.

Exposures,
Hazard
characteri-
sations.

Kinetic models convert
exposures or hazard
characterisations from one or
more external routes or
compartments to an internal
(target) compartment. The
reverse conversion from
internal to external can also be
made (reverse dosimetry).

Continued on next page
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Category Module Inputs Used by Description
Hazard Active

substances
AOP
networks,
Points of
departure,
Hazard
characteri-
sations,
Molecular
docking
models,
QSAR
membership
models.

Concentra-
tions,
Occurrence
patterns,
Substance
conversions,
Non-dietary
exposures,
Kinetic
models,
Relative
potency
factors,
Hazard
characteri-
sations, Food
conversions,
Dietary
exposures
with
screening,
Dietary
exposures,
Exposures.

Active substances are
substances that may lead (P>0)
to a specific health effect
(adverse outcome). Active
substances can be specified
directly as data or calculated
from POD presence, QSAR
models or Molecular docking
models. Active substances can
have an assessment group
membership 1 (crisp), or
values in the range (0,1]
(probabilistic).

Relative
potency
factors

Active
substances,
AOP
networks,
Hazard
characteri-
sations.

Concentra-
tions,
Concentra-
tion models,
Dietary
exposures
with
screening,
Dietary
exposures,
Exposures.

Relative potency factors
(RPFs) quantify potencies of
substances with respect to a
defined effect, relative to the
potency of a chosen index
substance. RPFs can be used to
express combined exposures of
multiple substances in terms of
a the exposure value of the
chosen index substance (i.e., in
index substance equivalents).
In MCRA, hazard
characterisations, and therefore
also RPFs are based on mass
units (e.g., µg), and not on mol
units. RPFs can be different for
different levels of the human
organism (external, internal,
specific compartment). RPFs
can be given as data or
computed from hazard
characterisations. RPFs can be
specified with uncertainty.
Computation from uncertain
hazard characterisations allows
to include correlations between
uncertain RPFs which originate
from using the same index
substance.

Continued on next page
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Category Module Inputs Used by Description

Hazard
characteri-
sations

AOP
networks,
Active
substances,
Points of
departure,
Dose
response
models,
Effect repre-
sentations,
Inter-species
conversions,
Intra species
factors,
Kinetic
models.

Active
substances,
Relative
potency
factors,
Risks.

Hazard characterisations are
benchmark doses for active
substances and for the chosen
effect at the chosen target level
(external or internal) of the
hazard assessment. Hazard
characterisations are based on
points of departure, such as
BMDs from dose-reponse
models or externally specified
points of departure (MDSs,
NOAELs or LOAELs). The
computation may involve
inter-species conversion,
intra-species factors and the
use of kinetic models or
absorption factors to convert
external doses to internal doses.

Points of
departure

Substances,
Effects, AOP
networks.

Active
substances,
Hazard
characteri-
sations.

Externally specified points of
departure can be used as an
alternative to calculated BMDs
from dose response models.
Points of departure can be of
various types, such as NOAEL,
LOAEL or BMD. They can be
used to construct the list of
active substances, to derive
relative potency factors, and to
perform health impact
assessments.

Dose
response
models

Dose
response
data, Effect
representa-
tions.

Hazard
characteri-
sations.

Dose response models are
models fitted to dose response
data and can be provided as
data or calculated using a local
or remote version of PROAST.
The main results for hazard
and risk assessment are
benchmark doses (BMDs),
related to a specified substance,
response, optionally covariate
value, and the benchmark
response (BMR).

Dose
response
data

Substances,
Test systems,
Responses.

Dose
response
models.

Dose response data are data on
response values of test systems
at specified doses of substances
(or mixtures of substances)
from dose response
experiments.

Effect repre-
sentations

Effects,
Responses,
AOP
networks.

Hazard
characteri-
sations, Dose
response
models.

Effect representations specify
the responses that can be used
to measure specified effects
and which response levels, the
benchmark response (BMR),
define the hazard limits for the
effects.

Continued on next page
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Category Module Inputs Used by Description

Inter-species
conversions

Substances,
Effects.

Hazard
characteri-
sations.

Inter-species conversions
specify how to convert a hazard
characterisation for a given
species to a hazard
characterisation for humans. In
the simplest approach, this
specifies a fixed inter-species
factor. In a higher tier, this
specifies a geometric mean
(GM) and geometric standard
deviation (GSD) for a
lognormal uncertainty
distribution of the interspecies
factor. Inter-species conversion
are specified per effect and can
be general or
substance-specific.

Intra species
factors

Substances,
Effects.

Hazard
characteri-
sations.

Intra-species factors specify
how to convert a hazard
characterisation from the
average to a sensitive human
individual.

AOP
networks

Effects. QSAR
membership
models,
Molecular
docking
models,
Active
substances,
Relative
potency
factors,
Hazard
characteri-
sations,
Points of
departure,
Effect repre-
sentations.

Effects can be related to each
other using the toxicological
concept of adverse outcome
pathways (AOPs) and adverse
outcome pathway networks
(see https://aopwiki.org).
Adverse Outcome Pathway
(AOP) Networks specify how
biological events (effects) can
lead to an adverse outcome
(AO) in a qualitative way
through relations of upstream
and downstream key events
(KEs), starting from molecular
initiating events (MIEs). Using
AOPs, the adverse outcome
(AO), e.g., liver steatosis, is
linked to key events (KEs),
e.g., triglyceride accumulation
in the liver, and to molecular
initialing events (MIEs), e.g.,
PPAR-alpha receptor
antagonism. In general,
multiple AOPs may lead to the
same AO, and therefore AOP
networks can be identified.

Continued on next page
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Category Module Inputs Used by Description
Risks Risks Exposures,

Hazard
characteri-
sations.

Risks (health impacts) are
quantified by comparing
exposures and hazard
characterisations at the chosen
level (external or internal) via
margins of exposure (MOE) or
more generalised or integrated
margins of exposure (IMOE).
In addition, risks can be
assessed from a plot of hazard
characterisations vs. exposures.
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THREE

EXAMPLES

Note: This section is under construction. Please contribute!

Training materials used in EuroMix training sessions:
• EuroMix dietary exposure
• RPF-exercise 1-for training-draft

There are a few exercises prepared that you could follow to get started.

3.1 Cumulative dietary exposure assessment

3.1.1 Introduction

The goal of this exercise is to perform a probabilistic cumulative dietary exposure assessment, illustrating all data
needed. In Example 1 we will upload and use nine different files containing the data. In Example 2 we will upload and
use a single data file for the same purpose. In the example the exposure will be characterised by upper tail percentiles,
and the risk driving substances and foods can be examined. In Example 3 an uncertainty analysis is added.

3.1.2 Preparation

In the workspace browser ( icon), create a new workspace Examples, using the button in the bottom right corner.

3.1.3 Example 1

Calculate a cumulative chronic dietary exposure for Dutch young adults in 2003 regarding a group of eight triazole
substances according to the basic optimisticmodel of the EFSA 2012 guidance document. Use liver steatosis as a focal
effect and Cyproconazole as an index substance. The data files are already available in the data folderDocumentation-
Examples / Exercise Dietary Exposure Assessment.
Detailed steps are as follows.

• In the Examples workspace, create a new action using the button in the bottom right corner.
• Select action type Dietary exposures

• Name it, e.g. Triazoles exposures
• (Optional) You can also add tags (e.g. triazoles, NL, steatosis) as labels that can be used later to find
simiar actions

• (Optional) You can add a description for further information
• Click Next
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• Specify Dietary exposures settings
• Tier: EFSA 2012 Optimistic
• Risk type Chronic
• Click Create

You are now directed to the main page of the new action. You can always return to this main page by clicking Action
settings or the action type name (Dietary exposures) in the green bar.
The main page contains at least three blocks of information: Scope, Inputs and Settings. We will now first link all
nine datafiles needed for this cumulative assessment. For most settings we will use default values in accordance with
the chosen tier (EFSA 2012 Optimistic).
Scope of the assessment:

• Click Effects (path in the green bar changes Total Dietary exposures / Effects)
• At Effects data source, click and browse to the file Effect - Steatosis.xlsx, then click Select
• At Effect Settings for focal effect select Steatosis-liver and click Save Changes

• In the green navigation bar, click Dietary exposures to go up one level.
• Click Foods (path: Dietary exposures / Foods)

• At Foods data source, click and browse to the file Foods.xlsx, then click Select
• In the green navigation bar, click Dietary exposures to go up one level

• Click Populations (optional) (path: Dietary exposures / Populations)
• At Populations data source, click and browse to the file Populations.xlsx, then click Select
• This file contains two populations, only one is allowed. Click under Populations selection, this opens
a pop-up window. Deselect NL_2006, then click Save. The red warning signs should now be gone.
(Note: green warning signs point at details and can usually be ignored)

• In the green navigation bar, click Dietary exposures to go up one level.
• Click Substances (path: Dietary exposures / Substances)

• At Substances data source, click and browse to the file Substances - Triazoles.xlsx, then click Select
• At Substance settings for Index substance select Cyproconazole and click Save Changes

• In the green navigation bar, click Dietary exposures to go up one level
Next we choose the other input data:

• Click Consumptions by food as measured (path: Dietary exposures / Consumptions by food as measured)
• Click Consumptions (path: Dietary exposures / Consumptions by food as measured / Consumptions)

• At Consumptions data source, click and browse to the file FoodConsumptions.xlsx and Select
• At Consumptions data selection, with open the food consumption surveys selection.

• The file contains two surveys, but only one is allowed. Click under Consumptions data se-
lection, this opens a pop-up window. Deselect VCP-kids, then click Save (the red warning
should now be gone)

• In the green navigation bar, click Consumptions by food as measured to go up one level
• Click Food conversions (path: Dietary exposures / Consumptions by food as measured / Food conversions)

• Click Foods as measured (path: Dietary exposures / Consumptions by food as measured / Food con-
versions / Foods as measured)
• Click Concentrations (path: Dietary exposures / Consumptions by food as measured / Food con-
versions / Foods as measured / Concentrations)
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• At Concentrations data source, click and browse to the file ConcentrationData.xlsx, then
click Select

• In the green navigation bar, click Food conversions to go up two levels
• Click Food recipes (path: Dietary exposures / Consumptions by food as measured / Food conversions
/ Food recipes)
• At Food recipes data source, clikc and browse to the file FoodTranslations.xlsx. then click
Select

• In the green navigation bar, click Dietary exposures to go up three levels
• Click Concentration models (path: Dietary exposures / Concentration models)

• Click Relative potency factors (path: Dietary exposures / Concentration models / Relative potency factors)
• At Relative potency data source, click and browse to the file RPFs.xlsx, then click Select
• In the green navigation bar, click Dietary exposures to go up two levels

• Click Processing factors (path: Dietary exposures / Processing factors)
• At Processing factors data source, clikc and browse to the file ProcessingFactors.xlsx, then click Select
• In the green navigation bar, click Dietary exposures to go up one level

• Click Active substances (optional) (path: Dietary exposures / Active substances)
• In this example we have a fixed list of relative potency factors for the eight substances, and don’t need
point of departure (POD) data to decide which substances are active with respect to the health effect and
therefore belong to the cumulative assessment group. Deselect the setting “Derive memberships from
POD presence”, then click Save Changes

• In the green navigation bar, click Dietary exposures to go up one level
Now run the model, either by clicking the run icon in the grey bar, or by clicking the run icon in the green bar
(Note: in the green bar can also be used to run subactions on their own).
The icon is replaced by the text “Running”. When the run has finished, the interface automatically changes to the
Results screen. You can also click the Results icon to go there.
As an exerciose, try find the following results:

1. The 99th percentile of cumulative exposure
2. The substance(s) with highest contribution to the total exposure
3. The food(s)-as-measured with the highest contribution to the upper tail of the exposure distribution

Answers:
• In the grey bar, browse to the results panel by clicking the icon and click on the latest output (path: Results
/ Dietary exposures)

• In the Dietary exposures tab, browse in the tree (unfold by clicking where necessary) to Dietary
exposures Distribution (OIM) Percentiles

• In the table it states that the 99% exposure percentile is at an exposure of 0.02127 µg/kg bw/day.
• In the Dietary exposures tab, browse in the tree (unfold by clicking where necessary) to Dietary
exposures Details Exposures by substance Total distribution

• From the pie chart it is clear that Tebuconazole contributes the most to the total exposure distribution
with 32.7%. In the table below the graph more details can be found.

• In the Dietary exposures tab, browse in the tree (unfold by clicking where necessary) to Dietary
exposures Details Exposures by food and substance Risk drivers upper tail

• From the pie chart it is clear that Flusilazole in grapefruit contributes the most (16.7%) to the upper
tail exposure distribution
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3.1.4 Example 2

We will create a new action to demonstrate uploading all the data at once. All data is now contained within one file,
MCRA-Documentation Example Dietary exposures.xlsx.
Detailed steps are as follows.

• In the Examples workspace, create a new action (using )
• Select action type Dietary exposures
• Name it, e.g. Triazoles exposures from one data file

• Click Next
• Specify Dietary exposures settings

• Tier: EFSA 2012 Optimistic
• Risk type Chronic
• Click Create

• Then go to the actions settings of this action (path: Dietary exposures)
• Click Effects (path: Dietary exposures / Effects)

• At Effects data source, click and browse to the fileMCRA-Documentation Example Dietary expo-
sures.xlsx. Click Toggle all, then Select. This will load all available data tables for all subactions of
Dietary exposures.

You still need to specify the focal effect (under Effects), index substance (under Substances), and food surveys (under
Consumptions by food as measured / Consumptions). You also need to deselect the “Derive memberships from POD
presence” setting under Active substances. Navigate to the subaction where these changes have to be made using the
green bar.
You now have achieved the same as in Example 1, only with the upload of one single file. You can now run the model,
and inspect the results, whcih shouldbe the same as for Example 1.

3.1.5 Example 3

Repeat the run of the previous task, but in addition to the nominal run, perform an uncertainty analysis as well.
• Click on the icon (in the grey bar) to open the uncertainty settings panel

• At Uncertainty settings, check Perform uncertainty analysis

• For Monte Carlo iterations per uncertainty run choose 100, and press Save Changes

• Now run the model, by pressing the run icon in the grey bar. Note that the run will take much more time.
Compare with the previous results, to find:

1. 95% uncertainty bounds for the 99% exposure percentile
2. 95% uncertainty bounds for the highest contribution from a substance to the total exposure distribution
3. 95% uncertainty bounds for the highest contribution from a food to the total exposure distribution
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4.1 Munro collection

This collection can be downloaded here.

4.2 Unit definitions

4.2.1 Benchmark response types

Accepted benchmark response types.
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Table 4.1: Unit definition for Benchmark response types.
Name Short name Aliases Description
Fraction
change

Fraction
change

Fraction-
Change,
FactorChange

The benchmark response is defined as a
fraction change of the background response
(i.e., defined for both increase and decrease).
E.g., for a factor of 0.1, the benchmark
response is at +/- 10% of background
response.

Percentage
change

Percentage
change

Percent-
ageChange

The benchmark response is defined as a
percentage change of the background
response (i.e., defined for both increase and
decrease). E.g., for a percentage of 10, the
benchmark response is at +/- 10% of
background response.

Fraction of
background
response

Fraction of
background

Factor, Facto-
rOfBackground

The benchmark response is defined as a
fraction of the background response. E.g.,
for a factor of 0.9, the benchmark response is
at 0.9 times the background response (i.e., a
decrease).

Percentage of
background
response

Percentage of
background

Percentage,
PercentageOf-
Background

The benchmark response is defined as a
percentage of the background response. E.g.,
for a percentage of 90, the benchmark
response is at 90% of the background
response (i.e., a decrease).

Extra risk ER ExtraRisk For quantal response types. The benchmark
dose is defined as the dose that
corresponding with an extra risk of a factor
times the background risk. A factor of 0.05
corresponds with 5% extra risk.

Additional risk AR AdditionalRisk For quantal response types. The benchmark
dose is defined as the dose that
corresponding with an additional risk of a
factor times the background risk. A factor of
0.05 corresponds with 5% additional risk.

ED50 ED50 ED50 For quantal response types. The benchmark
dose is defined as the dose that corresponds
with an estimated risk of 50% (ED50).

Absolute
threshold value

Threshold
value

Absolute The benchmark dose is defined as an
absolute threshold value.

Absolute
difference

Absolute
difference

Difference The benchmark dose is defined an absolute
difference with the background risk.

4.2.2 Body weight units

Units for describing person body weights.
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Table 4.2: Unit definition for Body weight units.
Name Short name Aliases
Kilogram kg kg, kilograms, kilogr, 3, G167A
Gram g g, grams, gr, 0, G148A

4.2.3 Concentration units

Units for describing substance concentrations.

Table 4.3: Unit definition for Concentration units.
Name Short name Aliases
kilogram/kilogram kg/kg kg/kg, kilogram/kilogram, kilogram/kg, 0, G063A
gram/kilogram g/kg g/kg, gram/kilogram, gram/kg, gr/kg, -3, G015A, G060A,

G191A
milligram/kilogram mg/kg mg/kg, milligram/kilogram, milligram/kg, milligr/kg, -6,

G049A, G061A
micro-
gram/kilogram

µg/kg µg/kg, ug/kg, microgram/kilogram, microgram/kg,
microgr/kg, -9, G050A, G076A

nanogram/kilogram ng/kg ng/kg, nanogram/kilogram, nanogram/kg, nanogr/kg, -12,
G077A, G080A

picogram/kilogram pg/kg pg/kg, picogram/kilogram, picogram/kg, picogr/kg, -15,
G081A

kilogram/liter kg/L kg/l, kg/L, kilogram/liter, kilogram/litre, G017A
gram/liter g/L g/l, g/L, gram/liter, gram/litre, gr/l, gr/L, G016A
milligram/liter mg/L mg/l, mg/L, milligram/liter, milligram/litre, milligr/l,

milligr/L, G052A, G062A
microgram/liter µg/L µg/l, ug/L, microgram/liter, microgram/litre, microgr/l,

microgr/L, G051A, G079A
nanogram/liter ng/L ng/l, ng/L, nanogram/liter, nanogram/litre, nanogr/l,

nanogr/L, G078A
picogram/liter pg/L pg/l, pg/L, picogram/liter, picogram/litre, picogr/l,

picogr/L
micro-
gram/milliliter

µg/mL µg/ml, ug/mL, microgram/milliliter, microgram/millilitre,
microgr/ml, microgr/mL

nanogram/milliliter ng/mL ng/ml, ng/mL, nanogram/milliliter, nanogram/millilitre,
nanogr/ml, nanogr/mL

4.2.4 Consumption units

Units for consumption amounts.

Table 4.4: Unit definition for Consumption units.
Name Short name Aliases
kilogram kg kg, kilograms, kilogr, 3, G167A
Gram g g, grams, gr, 0, G148A

4.2.5 Dose response model types

Known dose response model types.
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Table 4.5: Unit definition for Dose response model types.
Name Short name Aliases Description
Exp-m1 Exp-m1 Expm1
Exp-m2 Exp-m2 Expm2
Exp-m3 Exp-m3 Expm3
Exp-m4 Exp-m4 Expm4
Exp-m5 Exp-m5 Expm5
Hill-m1 Hill-m1 Hillm1
Hill-m2 Hill-m2 Hillm2
Hill-m3 Hill-m3 Hillm3
Hill-m4 Hill-m4 Hillm4
Hill-m5 Hill-m5 Hillm5
TwoStage TwoStage TwoStage
LogLogist LogLogist LogLogist
Weibull Weibull Weibull
LogProb LogProb LogProb
Gamma Gamma Gamma
Logistic Logistic Logistic
Probit Probit Probit
LVM Exp m2 LVM Exp m2 LVM Exp m2
LVM Exp m3 LVM Exp m3 LVM_Exp_M3
LVM Exp m4 LVM Exp m4 LVM_Exp_M4
LVM Exp m5 LVM Exp m5 LVM_Exp_M5
LVM Hill m2 LVM Hill m2 LVM Hill m2
LVM Hill m3 LVM Hill m3 LVM_Hill_M3
LVM Hill m4 LVM Hill m4 LVM_Hill_M4
LVM Hill m5 LVM Hill m5 LVM Hill m5

4.2.6 Dose units

Units for describing substance doses.

Table 4.6: Unit definition for Dose units.
Name Short name Aliases
gram/kilogram
bodyweight/day

g/kg bw/day g/kg bw/day, gram/kg bw/day, gr/kg bw/day

milligram/kilogram
bodyweight/day

mg/kg bw/day mg/kg bw/day, milligram/kg bw/day, milligr/kg bw/day,
G211A

micro-
gram/kilogram
bodyweight/day

µg/kg bw/day µg/kg bw/day, microgram/kg bw/day, microgr/kg bw/day

nanogram/kilogram
bodyweight/day

ng/kg bw/day ng/kg bw/day, nanogram/kg bw/day, nanogr/kg bw/day

picogram/kilogram
bodyweight/day

pg/kg bw/day pg/kg bw/day, picogram/kg bw/day, picogr/kg bw/day

fem-
togram/kilogram
bodyweight/day

fg/kg bw/day fg/kg bw/day, femtogram/kg bw/day, femtogr/kg bw/day

gram/gram
bodyweight/day

g/g bw/day g/g bw/day, gram/g bw/day, gr/g bw/day

milligram/gram
bodyweight/day

mg/g bw/day mg/g bw/day, milligram/g bw/day, milligr/g bw/day

Continued on next page
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Table 4.6 – continued from previous page
Name Short name Aliases
microgram/gram
bodyweight/day

µg/g bw/day µg/g bw/day, microgram/g bw/day, microgr/g bw/day

nanogram/gram
bodyweight/day

ng/g bw/day ng/g bw/day, nanogram/g bw/day, nanogr/g bw/day

picogram/gram
bodyweight/day

pg/g bw/day pg/g bw/day, picogram/g bw/day, picogr/g bw/day

femtogram/gram
bodyweight/day

fg/g bw/day fg/g bw/day, femtogram/g bw/day, femtogr/g bw/day

kilogram/day kg/day kg/day, kilogram/day, kilogr/day
gram/day g/day g/day, gram/day, gr/day
milligram/day mg/day mg/day, milligram/day, milligr/day
microgram/day µg/day µg/day, microgram/day, microgr/day
nanogram/day ng/day ng/day, nanogram/day, nanogr/day
picogram/day pg/day pg/day, picogram/day, picogr/day
femtogram/day fg/day fg/day, femtogram/day, femtogr/day
kilogram/kilogram kg/kg kg/kg, kilogram/kilogram, kilogram/kg, kg/kg bw
gram/kilogram g/kg g/kg, gram/kilogram, gram/kg, gr/kg, g/kg bw
milligram/kilogram mg/kg mg/kg, milligram/kilogram, milligram/kg, milligr/kg,

mg/kg bw, G225A
micro-
gram/kilogram

µg/kg µg/kg, microgram/kilogram, microgram/kg, microgr/kg,
µg/kg bw

nanogram/kilogram ng/kg ng/kg, nanogram/kilogram, nanogram/kg, nanogr/kg,
ng/kg bw

picogram/kilogram pg/kg pg/kg, picogram/kilogram, picogram/kg, picogr/kg, pg/kg
bw

Molar M M, mol/L
millimolar mM mM, mmol/L
micromolar µM uM, µM, umol/L
nanomolar nM nM, nmol/L
moles moles moles, Moles
millimoles mmoles mmoles, mMoles
micromoles µmoles umoles, uMoles
nanomoles nmoles nmoles, nMoles

4.2.7 Exposure route types

The different routes in which an individual is exposed to substance concentrations.

Table 4.7: Unit definition for Exposure route types.
Name Short name Aliases Description
Dietary
exposure

Dietary Dietary Dietary exposure.

Non-dietary
oral exposure

Oral Oral Non-dietary oral exposure.

Non-dietary
dermal
exposure

Dermal Dermal Non-dietary dermal exposure.

Non-dietary
inhalation
exposure

Inhalation Inhalation Non-dietary inhalation exposure.

At target At target AtTarget Exposures directly at the target (organ).
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4.2.8 Exposure types

The different types of exposure. I.e., acute or chronic.

Table 4.8: Unit definition for Exposure types.
Name Short name Aliases Description
Acute Acute Acute Acute exposure.
Chronic Chronic Chronic Chronic exposure.

4.2.9 Exposure units

Units for describing substance exposures.

Table 4.9: Unit definition for Exposure units.
Name Short name Aliases
gram/kilogram
bodyweight/day

g/kg bw/day g/kg bw/day, gram/kg bw/day, gr/kg bw/day, G212A

milligram/kilogram
bodyweight/day

mg/kg bw/day mg/kg bw/day, milligram/kg bw/day, milligr/kg bw/day,
G211A

micro-
gram/kilogram
bodyweight/day

µg/kg bw/day µg/kg bw/day, microgram/kg bw/day, microgr/kg bw/day,
G210A

nanogram/kilogram
bodyweight/day

ng/kg bw/day ng/kg bw/day, nanogram/kg bw/day, nanogr/kg bw/day,
G214A

picogram/kilogram
bodyweight/day

pg/kg bw/day pg/kg bw/day, picogram/kg bw/day, picogr/kg bw/day

fem-
togram/kilogram
bodyweight/day

fg/kg bw/day fg/kg bw/day, femtogram/kg bw/day, femtogr/kg bw/day

gram/gram
bodyweight/day

g/g bw/day g/g bw/day, gram/g bw/day, gr/g bw/day

milligram/gram
bodyweight/day

mg/g bw/day mg/g bw/day, milligram/g bw/day, milligr/g bw/day

microgram/gram
bodyweight/day

µg/g bw/day µg/g bw/day, microgram/g bw/day, microgr/g bw/day

nanogram/gram
bodyweight/day

ng/g bw/day ng/g bw/day, nanogram/g bw/day, nanogr/g bw/day

picogram/gram
bodyweight/day

pg/g bw/day pg/g bw/day, picogram/g bw/day, picogr/g bw/day

femtogram/gram
bodyweight/day

fg/g bw/day fg/g bw/day, femtogram/g bw/day, femtogr/g bw/day

kilogram/day kg/day kg/day, kilogram/day, kilogr/day
gram/day g/day g/day, gram/day, gr/day
milligram/day mg/day mg/day, milligram/day, milligr/day
microgram/day µg/day µg/day, microgram/day, microgr/day
nanogram/day ng/day ng/day, nanogram/day, nanogr/day
picogram/day pg/day pg/day, picogram/day, picogr/day
femtogram/day fg/day fg/day, femtogram/day, femtogr/day
gram/kilogram g/kg g/kg, gram/kg, gr/kg, G015A
milligram/kilogram mg/kg mg/kg, milligram/kg, milligr/kg, G061A
micro-
gram/kilogram

µg/kg µg/kg, microgram/kg, microgr/kg, G050A

nanogram/kilogram ng/kg ng/kg, nanogram/kg, nanogr/kg, G077A
picogram/kilogram pg/kg pg/kg, picogram/kg, picogr/kg, G081A

Continued on next page
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Table 4.9 – continued from previous page
Name Short name Aliases
fem-
togram/kilogram

fg/kg fg/kg, femtogram/kg, femtogr/kg

gram g g, gram, gr, G148A
milligram mg mg, milligram, milligr, G155A
microgram µg µg, microgram, microgr
nanogram ng ng, nanogram, nanogr, G120A
picogram pg pg, picogram, picogr, G125A
femtogram fg fg, femtogram, femtogr

4.2.10 Hazard characterisation types

Known hazard characterisation types.

Table 4.10: Unit definition for Hazard characterisation types.
Name Short name Aliases
Benchmark dose BMD BMD
No observed
adverse effect level

NOAEL NOAEL

Lowest observed
adverse effect level

LOAEL LOAEL

Acceptable daily
intake

ADI ADI

Acute reference
dose

ARfD ARfD

No observed effect
level

NOEL NOEL

4.2.11 Point of departure types

Known point of departure types.

Table 4.11: Unit definition for Point of departure types.
Name Short name Aliases Description
Benchmark
dose

BMD BMD

No observed
adverse effect
level

NOAEL NOAEL

Lowest
observed
adverse effect
level

LOAEL LOAEL

No observed
effect level

NOEL NOEL

LD50 LD50 LD50 Median lethal dose.

4.2.12 Response types

Available response types.
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Table 4.12: Unit definition for Response types.
Name Short name Aliases Description
Continuous
multiplicative

CM Continuous-
Multiplicative

Response values are positive real numbers,
e.g., weight, size.

Continuous
additive

CA ContinuousAd-
ditive

Response values are real numbers, e.g.,
weight change, temperature.

Binary B Binary Response values have binary outcomes
(yes/no, true/false, success/failure, 0/1, etc.).

Quantal Q Quantal,
Binomial

Response is measured in terms of number of
successes out of N possible.

Quantal group QG QuantalGroup Individual responses are measured as binary
values, which may be grouped to form a
quantal response.

Count C Count Number of items (cells, molecules, deaths,
etc.) in given interval/area/volume.

Ordinal O Ordinal Relative scores (or graded scores) useable
only for ranking.

4.2.13 Target dose level types

This unit specifies whether a dose is assumed to be an internal or external dose.

Table 4.13: Unit definition for Target dose level types.
Name Short name Aliases Description
External Ext External, Ext External exposure.
Internal Int Internal, Int Internal exposure.

4.2.14 Test system types

Available test system types.

Table 4.14: Unit definition for Test system types.
Name Short name Aliases Description
In vivo In vivo InVivo In vivo
Cell line Cell line CellLine CellLine
Primary cells Primary cells PrimaryCells PrimaryCells
Tissue Tissue Tissue Tissue
Organ Organ Organ Organ

4.3 Transformations

4.3.1 Box Cox power transformation

The Box-Cox power transformation is a data transformation to achieve a better normality and to stabilize the variance.
In MCRA, the transformation parameter 𝑝 in (𝑦𝑝 − 1)/𝑝 is determined by maximizing the log-likelihood function

𝑙(𝑝) = −𝑛
𝑠 log[ 1

𝑛
𝑛

∑
𝑖=1

(𝑦(𝑝)
𝑖 − 𝑦(𝑝))2] + (𝑝 − 1)

𝑛
∑
𝑖=1

log 𝑦𝑖
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where 𝑖 indexes the 𝑛 observations and

𝑦(𝑝) = 1
𝑛

𝑛
∑
𝑖=1

𝑦(𝑝)
𝑖

is the average of the 𝑦(𝑝)
𝑖 (Box & Cox, 1964) [9].

4.4 Gauss-Hermite

4.4.1 Gauss-Hermite integration

4.4.2 One-dimensional Gauss-Hermite integration

Gauss-Hermite integration approximates a specific integral as follows
∞

∫
−∞

𝑓(𝑥) exp(−𝑥2)d𝑥 ≈
𝑁

∑
𝑗=1

𝑤𝑗𝑓(𝑥𝑗

in which 𝑤𝑗 and 𝑥𝑗 are weights and abscissas for N-point Gauss-Hermite integration, see Abramowitz and Stegun
(1972) [7]. N-point integration is exact for all polynomials 𝑓(𝑥) of degree 2N-1, see Dahlquist and Björck (1974)
[14]. This can for instance be used to approximate the mean of a function 𝐹(𝑌 ) of a normally distributed random
variable 𝑌 with mean 𝜇 and variance 𝜎2:

∞

∫
−∞

𝐹(𝑥) 1√
2𝜋𝜎 exp(−(𝑦 − 𝜇)2

2𝜎2 ) d𝑦

=
∞

∫
−∞

𝐹(𝜇 +
√

2𝜎𝑥) 1√𝜋 exp(−𝑥2)d𝑥

= 1√𝜋
𝑁

∑
𝑗=1

𝑤𝑗𝐹(𝜇 +
√

2𝜎𝑥𝑗)

4.4.3 Two-dimensional Gauss-Hermite integration

One-dimensional Gauss-Hermite integration can readily be extended to two dimensions. The following principal
result in two dimensions is more or less given in Jäckel (2005) [24] for the standard bivariate normal distribution
𝜙(𝑥, 𝑦; 𝜌) with correlation parameter 𝜌 :

∞

∫
−∞

∞

∫
−∞

𝐹(𝑥, 𝑦)𝜙(𝑥, 𝑦; 𝜌)d𝑥d𝑦 ≈ 1
𝜋

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝑤𝑖𝑤𝑗𝐹(
√

2[𝑎𝑥𝑖 + 𝑏𝑥𝑗],
√

2[𝑏𝑥𝑖 + 𝑎𝑥𝑗])

in which

𝑎 =
√1 + 𝜌 + √1 − 𝜌

2
and

𝑏 =
√1 + 𝜌 − √1 − 𝜌

2
as given in Jäckel (2005) [24] .
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Jäckel (2005) discusses other Gauss-Hermite approximations to the two-dimensional integral, but found that the
approximation given above generally gives the most accurate results. For the general bivariate normal distribution
with means (𝜇𝑥, 𝜇𝑦) and variances (𝜎2

𝑥, 𝜎2
𝑦) the integral can be approximated by means of

1
𝜋

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝑤𝑖𝑤𝑗𝐹(𝜇𝑥 + 𝜎𝑥
√

2[𝑎𝑥𝑖 + 𝑏𝑥𝑗], 𝜇𝑦 + 𝜎𝑦
√

2[𝑏𝑥𝑖 + 𝑎𝑥𝑗])

The product𝑤𝑖𝑤𝑗 can be very small, especially when many quadrature points are used, thus wasting possibly precious
calculation time. This can be remedied by pruning, i.e. by dropping combinations of (𝑖, 𝑗) with very small values of
the product 𝑤𝑖𝑤𝑗.

4.4.4 Maximum likelihood for the LNN model with two-dimensional Gauss-
Hermite integration

Denote non-consumption on day 𝑗 for individual 𝑖 as 𝑌𝑖𝑗 = 0. The conditional likelihood, i.e. given random effects
𝑏𝑖 and 𝑣𝑖, of a non-consumption on day 𝑗 equals, with 𝐻() the inverse of the logit function

𝑃(𝑌𝑖𝑗 = 0|𝑏𝑖, 𝑣𝑖) = 1–𝐻(𝜆 + 𝑣𝑖).
The conditional likelihood of a positive intake 𝑌𝑖𝑗 > 0 equals, with 𝜙 the density of the normal distribution

𝑓(𝑌𝑖𝑗 = 𝑦𝑖𝑗|𝑦𝑖𝑗 > 0, 𝑏𝑖, 𝑣𝑖) = 𝐻(𝜆 + 𝑣𝑖)𝜙(𝑦𝑖𝑗 − 𝜇 − 𝑏𝑖; 0, 𝜎2
𝑤)

The conditional likelihood contribution for individual 𝑖 is the product of the individual contributions for each day.
The marginal likelihood contribution for individual 𝑖 is obtained by integrating over the possible values of 𝑏𝑖 and
𝑣𝑖. Since the pair (𝑏𝑖, 𝑣𝑖) follows a bivariate normal distribution, the likelihood contribution for individual 𝑖 can be
approximated by means of two-dimensional Gauss-Hermite integration. Individually based covariabels, such as sexe
or age, imply that 𝜇𝑖 and 𝜆𝑖 must be used instead of 𝜇 and 𝜆. The likelihood must be optimized by means of some
general optimization routine.

4.5 Concentration models

Let 𝑥 denote a random variable from a lognormal distribution. Then, the log transformed variable 𝑦 = 𝑙𝑛(𝑥) is
normally distributed with 𝜇 and variance 𝜎. The probability density function (p.d.f.) of y may be expressed as:

𝑓𝑦(𝑦, 𝑝0, 𝜇𝑦, 𝜎2
𝑦) = 𝑝0𝐼(𝑦; 0) + (1 − 𝑝0)(1 − 𝐼(𝑦; 0)) ⋅ 1

√2𝜋𝜎𝑦
exp

(𝑦 − 𝜇𝑦)2

2𝜎2𝑦

where 𝑝0 = Pr(𝑦 < 𝑙𝑜𝑔(𝑋𝑙𝑜𝑟)), 𝑥𝑙𝑜𝑟 is the limit of reporting and 𝐼(𝑦; 0) is an indicator function for 𝑦 < 𝑙𝑜𝑔(𝑋𝑙𝑜𝑟).
For 𝑝0 = 0 the p.d.f. of 𝑦 reduces to the usual lognormal density. The left truncated density for 𝑦 ≥ log(𝑋𝑙𝑜𝑟) may
be expressed as:

𝑓𝑦(𝑦; 𝜇𝑦, 𝜎2
𝑦) = 1

√2𝜋𝜎𝑦
exp

(𝑦 − 𝜇𝑦)2

2𝜎2𝑦
/(1 − Φ(𝑧))

with Φ(⋅) the standard normal c.d.f. and 𝑧 = (log(𝑥𝑙𝑜𝑟)−𝜇𝑦)/𝜎𝑧. Model parameters are estimated using maximum
likelihood estimation based on the loglikelihood functions specified below. The loglikelihood functions are evaluated
in R, using the optim algorithm to find estimates for 𝜇𝑦, 𝜎2

𝑦 and 𝑝0.

4.5.1 Mixture zero spike and censored lognormal

The loglikelihood may be expressed as:

log𝐿(𝑝0, 𝜇𝑦, 𝜎2
𝑦) =

𝑛0

∑
𝑖=1

log(𝑝0 + (1 − 𝑝0)Φ(𝑧𝑖)) + 𝑛1 log(
1 − 𝑝0
√2𝜋𝜎𝑦

) −
𝑛

∑
𝑖=𝑛0+1

(𝑦𝑖 − 𝜇𝑦)2

2𝜎2𝑦

where 𝑦𝑖 = log(𝑥𝑖), Φ(⋅) is the standard normal c.d.f., 𝑧 = (log(𝑥𝑖,𝑙𝑜𝑟) − 𝜇𝑦)/𝜎𝑦, 𝑧𝑙𝑜𝑟 = (log(𝑙𝑜𝑟) − 𝜇𝑦)/𝜎𝑦 with
𝑛0 number of censored values (𝑥𝑖 < 𝑥𝑖,𝑙𝑜𝑟), 𝑛1 number of uncensored values (𝑥𝑖 ≥ 𝑥𝑖,𝑙𝑜𝑟) and 𝑥𝑖,𝑖 = 1 ⋯ 𝑛.
Multiple values for LOR are allowed.
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4.5.2 Censored lognormal

When 𝑝0 = 0 the loglikelihood reduces to:

log𝐿(𝜇𝑦, 𝜎2
𝑦) =

𝑛0

∑
𝑖=1

log(Φ(𝑧)) + 𝑛1 log(
1

√2𝜋𝜎𝑦
) −

𝑛
∑

𝑖=𝑛0+1

(𝑦𝑖 − 𝜇𝑦)2

2𝜎2𝑦

Multiple values for LOR are allowed.

4.5.3 Mixture non-detect spike and truncated lognormal

Ignoring the 𝑛0 values below 𝑥𝑙𝑜𝑟, the loglikelihood may be expressed as:

log𝐿(𝜇𝑦, 𝜎2
𝑦) = −𝑛1 log(1 − Φ(𝑧)) + 𝑛1 log(

1
√2𝜋𝜎𝑦

) −
𝑛

∑
𝑖=𝑛0+1

(𝑦𝑖 − 𝜇𝑦)2

2𝜎2𝑦

Only one value for LOR is allowed.

4.5.4 Mixture non-detect spike and lognormal

Ignoring the 𝑛0 values below 𝑥𝑙𝑜𝑟, the loglikelihood may be expressed as:

log𝐿(𝜇𝑦, 𝜎2
𝑦) = 𝑛1 log(

1
√2𝜋𝜎𝑦

) −
𝑛

∑
𝑖=𝑛0+1

(𝑦𝑖 − 𝜇𝑦)2

2𝜎2𝑦

Only one value for LOR is allowed.

4.6 Chronic exposure assessment, daily consumed foods

4.6.1 Model based usual intake

Foods are consumed on a daily basis.
For individual 𝑖 on day 𝑗 let 𝑌𝑖𝑗 denote the 24 hour recall of a food (𝑖 = 1…𝑛; 𝑗 = 1…𝑛𝑖). In most cases within-
individual random variation is dependent on the individual mean and has a skewed distribution. It is therefore cus-
tomary to define a one-way random effects model for 𝑌𝑖𝑗 on some transformed scale

𝑌 ∗
𝑖𝑗 = 𝑔(𝑌𝑖𝑗) = 𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗

with 𝑏𝑖 ∼ 𝑁(0, 𝜎2
𝑏 ) and 𝑤𝑖𝑗 ∼ 𝑁(0, 𝜎2

𝑤)
Note that 𝑏𝑖 represents variation between individuals and 𝑤𝑖𝑗 represents variation within individuals between days.
The mean 𝜇𝑖 may depend on a set of covariate 𝑍𝑖 = (𝑍𝑖1, …, 𝑍𝑖𝑝):

𝜇𝑖 = 𝛽0 + 𝛽𝑡
1𝑍𝑖

where 𝛽0 and 𝛽1 are regression coefficients.
The usual intake 𝑇𝑖 for an individual 𝑖 is defined as the mean consumption over many many days. This assumes
that the untransformed intakes 𝑌𝑖𝑗 are unbiased for true usual intake rather than the transformed intakes 𝑌 ∗

𝑖𝑗. In
mathematical terms 𝑇𝑖 is the expectation of the intake for this individual where the expectation is taken over the
random day effect:

𝑇𝑖 = 𝐸𝑤[𝑔−1(𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗)|𝑏𝑖] = 𝐹(𝑏𝑖)
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4.6.2 Model based usual intake on the transformed scale

For the model based usual intake first note that the conditional distribution

(𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗|𝑏𝑖) ∼ 𝑁(𝜇𝑖 + 𝑏𝑖, 𝜎2
𝑤)

It follows that the usual intake 𝑇𝑖 is given by

𝑇𝑖 = 𝐸𝑤[𝑔−1(𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗|𝑏𝑖)] =
∞

∫
−∞

𝑔−1(𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗)
1

√2𝜋𝜎2𝑤
exp(− 𝑤2

2𝜎2𝑤
) d𝑤

4.6.3 Model based using a logarithmic transformation

For the logarithmic transform the usual intake 𝑇𝑖 can be written in closed form using the formula for the mean of the
lognormal distribution:

𝑇𝑖 = exp(𝜇𝑖 + 𝑏𝑖 + 𝜎2
𝑤/2)

In this case 𝑇𝑖 follows a log-normal distribution with mean 𝜇𝑖 + 𝜎2
𝑤/2 and variance 𝜎2

𝑏 . This fully specifies the usual
intake distribution, e.g. the mean and variance of the usual intake are given by

𝜇𝑖𝑇 = 𝐸[𝑇𝑖] = exp(𝜇𝑖 + 𝜎2
𝑤/2 + 𝜎2

𝑏 /2)

𝜎2
𝑖𝑇 = 𝑉 𝑎𝑟[𝑇𝑖] = [exp(𝜎2

𝑏 ) − 1] exp(2𝜇𝑖 + 𝜎2
𝑤 + 𝜎2

𝑏 )

4.6.4 Model based using a power transformation

For the power transformation the integral can be approximated by means of N-point Gauss-Hermite integration. This
results in the following usual intake

𝑇𝑖 ≈ 1√𝜋
𝑁

∑
𝑗=1

𝑤𝑗(𝜇𝑖 + 𝑏𝑖 +
√

2𝜎𝑤𝑥𝑗)𝑝

with 𝑝 the inverse of the power transformation. A similar approximation can be used for the Box-Cox transformation.
There can be a small problem with Gauss-Hermite integration. The summation term (𝜇𝑖 + 𝑏𝑖 +

√
2𝜎𝑤𝑥𝑗)𝑝 can not

be calculated when the factor between round brackets is negative and the power 𝑝 is not an integer. This can happen
when (𝜇𝑖 + 𝑏𝑖) is small relative to the between day standard error 𝜎𝑤. In that case the corresponding term is set to
zero. This is not a flaw in the numerical method but in the statistical model since the model allows negative intakes
on the transformed scale which cannot be transformed back to the natural scale. The mean and variance of 𝑇𝑖 can
be approximated again by using Gauss-Hermite integration:

𝜇𝑖𝑇 = 𝐸[𝑇𝑖] = 1√𝜋
𝑁

∑
𝑘=1

𝑤𝑘
1√𝜋

𝑁
∑
𝑗=1

𝑤𝑗(𝜇𝑖 +
√

2𝜎𝑤𝑥𝑗 +
√

2𝜎𝑏𝑥𝑘)

𝜎𝑖𝑇 = 𝑉 𝑎𝑟[𝑇𝑖] = 1√𝜋
𝑁

∑
𝑘=1

𝑤𝑘 [ 1√𝜋
𝑁

∑
𝑗=1

𝑤𝑗(𝜇𝑖 +
√

2𝜎𝑤𝑥𝑗 +
√

2𝜎𝑏𝑥𝑘)]
2

− 𝜇2
𝑇

An alternative method for obtaining model based usual intakes for the power transformation employs a Taylor series
expansion for the power, see e.g. Kipnis (2009) [31]. This is however less accurate than Gauss-Hermite integration.
For the power transformation simulation is required to derive the usual intake distribution: simulate a random effect
𝑏𝑖 for many individuals and then approximate 𝑇𝑖 for these individuals. The 𝑇𝑖 values then form a sample form the
usual intake distribution.

240 Chapter 4. Appendices



MCRA Documentation, Release 9.0

4.6.5 Model assisted usual intake on the transformed scale

The model assisted approach employs a prediction for the usual intakes of every individual in the study. This requires
a prediction of the individual random effect 𝑏𝑖 for every individual.
In the one-way random effects model the Best Linear Unbiased Prediction for (𝜇𝑖 + 𝑏𝑖) is given by

BLUPi = 𝜇𝑖 + ( ̄𝑌 ∗
𝑖 − 𝜇𝑖) ( 𝜎2

𝑏
𝜎2

𝑏 + 𝜎2𝑤/𝑛𝑖
)

in which ̄𝑌 ∗
𝑖 is the mean of the transformed intakes for individual 𝑖. BLUPs have optimal properties for some

purposes, but not for the purpose of representing the variation 𝜎2
𝑏 between individuals. This can be seen by noting

that

Var( ̄𝑌 ∗
𝑖 ) = 𝜎2

𝑏 + 𝜎2
𝑤/𝑛𝑖

and thus

Var(BLUPi) = ( 𝜎4
𝑏

𝜎2
𝑏 + 𝜎2𝑤/𝑛𝑖

)

which is smaller than the between individual variance 𝜎2
𝑏 . As an alternative a modified BLUP can be defined by

means of

modifiedBLUP𝑖 = 𝜇𝑖 + ( ̄𝑌 ∗
𝑖 − 𝜇𝑖)√( 𝜎2

𝑏
𝜎2

𝑏 + 𝜎2𝑤/𝑛𝑖
)

which has the correct variance 𝜎2
𝑏 and also the correct mean 𝜇𝑖. However these optimal properties disappear when

modified BLUPs are directly backtransformed to the original scale.

4.6.6 Model assisted using a logarithmic transformation

For the logarithmic transformation the usual intake 𝑇𝑖 follows a log-normal distribution with mean 𝜇𝑖 + 𝜎2
𝑤/2 and

variance 𝜎2
𝑏 . If we can construct a BLUP like stochastic variable with the same mean and variance, then this variable

be an unbiased predictor with the correct variance. It is easy to see that the following variable has the same distribution
as 𝑇𝑖

modelassistedBLUP𝑖 = 𝜇𝑖 + 𝜎2
𝑤
2 + ( ̄𝑌 ∗

𝑖 − 𝜇𝑖)√( 𝜎2
𝑏

𝜎2
𝑏 + 𝜎2𝑤/𝑛𝑖

)

So the model assisted individual intake exp(modelassistedBLUP𝑖) has the same distribution as the usual intake and
is thus the best predictor for usual intake.
Kipnis et al. (2009) [31] employs the conditional distribution of 𝑏𝑖 given the observations 𝑌𝑖1, ⋯ , 𝑌𝑖𝑛𝑖

to obtain a
prediction. First note that

(𝑏𝑖|𝑌𝑖1, ⋯ , 𝑌𝑖𝑛𝑖
) = (𝑏𝑖|𝑌 ∗

𝑖1, ⋯ , 𝑌 ∗
𝑖𝑛𝑖

) = (𝑏𝑖| ̄𝑌 ∗
𝑖 )

Since all distributions in the one-way random effects model are normal it follows that:

(𝑏𝑖, ̄𝑌 ∗
𝑖 ) ∼ BivariateNormal(0, 𝜇𝑖, 𝜎2

𝑏 , 𝜎2
𝑏 + 𝜎2

𝑤/𝑛𝑖, 𝜎2
𝑏 )

where the last parameter represents the covariance between 𝑏𝑖 and ̄𝑌 ∗
𝑖 . It follows that the conditional distribution

(𝑏𝑖| ̄𝑌 ∗
𝑖 ) ∼ 𝑁(𝜇𝑐, 𝜎2

𝑐)

with

𝜇𝑐 = 𝜎2
𝑏

𝜎2
𝑏 + 𝜎2𝑤/𝑛𝑖

( ̄𝑌 ∗
𝑖 − 𝜇𝑖)

4.6. Chronic exposure assessment, daily consumed foods 241



MCRA Documentation, Release 9.0

and

𝜎2
𝑐 = 𝜎2

𝑏 𝜎2
𝑤/𝑛𝑖

𝜎2
𝑏 + 𝜎2𝑤/𝑛𝑖

A prediction for the usual intake 𝑇𝑖 = 𝐹(𝑏𝑖) is then obtained by the expectation

𝐸[𝐹(𝑏𝑖)| ̄𝑌 ∗
𝑖 ] = ∫ 𝐹(𝑏)𝜙(𝑏; 𝜇𝑐, 𝜎2

𝑐)d𝑏

For the logarithmic transform 𝐹(𝑏𝑖) = exp(𝜇𝑖 + 𝑏𝑖 + 𝜎2
𝑤/2) and the expectation reduces to

𝐸[𝐹(𝑏𝑖)| ̄𝑌 ∗
𝑖 ] = exp(𝜇𝑖 + 𝜇𝑐 + 𝜎2

𝑐/2 + 𝜎2
𝑤/2)

which is a function of ̄𝑌 ∗
𝑖 through 𝜇𝑐. To obtain the mean and variance of the prediction note that

𝜇𝑖 + 𝜇𝑐 + 𝜎2
𝑐/2 + 𝜎2

𝑤/2 ∼ 𝑁 (𝜇𝑖 + 𝜎2
𝑏 𝜎2

𝑤/𝑛𝑖
2(𝜎2

𝑏 + 𝜎2𝑤/𝑛𝑖)
+ 𝜎2

𝑤
2 , 𝜎4

𝑏
𝜎2

𝑏 + 𝜎2𝑤/𝑛𝑖
)

It follows that the expectation of the prediction equals

𝐸[𝐸[𝐹(𝑏𝑖)| ̄𝑌 ∗
𝑖 ]] = exp(𝜇𝑖 + 𝜎2

𝑏 𝜎2
𝑤/𝑛𝑖

2(𝜎2
𝑏 + 𝜎2𝑤/𝑛𝑖)

+ 𝜎2
𝑤
2 + 𝜎4

𝑏
2(𝜎2

𝑏 + 𝜎2𝑤/𝑛𝑖)
)

= exp(𝜇𝑖 + 𝜎2
𝑏

2 + 𝜎2
𝑤
2 )

which equals the mean of the usual intake. However the variance of the prediction equals

Var[𝐸[𝐹(𝑏𝑖| ̄𝑌 ∗
𝑖 ]] = [exp( 𝜎4

𝑏
(𝜎2

𝑏 + 𝜎2𝑤/𝑛𝑖)
) − 1] exp(2𝜇𝑖 + 𝜎2

𝑏 + 𝜎2
𝑤)

Which is less than the variance of the usual intake. The approach of Kipnis et al (2009) [31] will therefor result in
too much shrinkage of the model assisted usual intake.

4.6.7 Model assisted using a power transformation

For the power transformation amodel assisted BLUPwith optimal properties, as derived above, cannot be constructed.
The approach of Kipnis et al. (2009) [31] can however be used to obtain a prediction in the following way. First
approximate 𝑇𝑖 = 𝐹(𝑏𝑖) by Gauss-Hermite integration:

𝐹(𝑏𝑖) = 𝑇𝑖 ≈ 1√𝜋
𝑁

∑
𝑗=1

𝑤𝑖(𝜇𝑖 + 𝑏𝑖 +
√

2𝜎𝑤𝑥𝑖)𝑝

Secondly again use Gauss-Hermite to approximate the expectation of the conditional distribution giving the prediction
𝑃𝑖.

𝑃𝑖 = 𝐸[𝐹(𝑏𝑖)| ̄𝑌 ∗
𝑖 ] = ∫ 𝐹(𝑏𝑖)𝜙(𝑏; 𝜇𝑐, 𝜎2

𝑐)d𝑏 ≈ 1
𝜋

𝑁
∑
𝑘=1

𝑤𝑘
𝑁

∑
𝑗=1

𝑤𝑗(𝜇𝑖 + 𝜇𝑐 +
√

2𝜎𝑤𝑥𝑗 +
√

2𝜎𝑐𝑥𝑘)𝑝

which is a function of ̄𝑌 ∗
𝑖 through 𝜇𝑐. It is likely that the thus obtained predictions 𝑃𝑖 have a variance that is too

small. If we would know the mean 𝜇𝑖𝑃 and variance 𝜎2
𝑖𝑃 of the predictions, the predictions could be linearly rescaled

to have the correct mean 𝜇𝑖𝑇 and variance 2
𝑖𝑇 . The mean and variance of the prediction can be calculated using

Gauss-Hermite integration.

𝜇𝑖𝑃 = 1√𝜋
𝑁

∑
𝑙=1

𝑤𝑙
1
𝜋

𝑁
∑
𝑘=1

𝑤𝑘
𝑁

∑
𝑗=1

𝑤𝑗(𝜇𝑖 +
√

2 𝜎2
𝑏

𝜎2
𝑏 + 𝜎2𝑤/𝑛𝑖

𝑥𝑙 +
√

2𝜎𝑤𝑥𝑗 +
√

2𝜎𝑐𝑥𝑘)𝑝

𝜎2
𝑖𝑃 = 1√𝜋

𝑁
∑
𝑙=1

𝑤𝑙 [ 1
𝜋

𝑁
∑
𝑘=1

𝑤𝑘
𝑁

∑
𝑗=1

𝑤𝑗(𝜇𝑖 +
√

2 𝜎2
𝑏

𝜎2
𝑏 + 𝜎2𝑤/𝑛𝑖

𝑥𝑙 +
√

2𝜎𝑤𝑥𝑗 +
√

2𝜎𝑐𝑥𝑘)𝑝]
2

− 𝜇2
𝑖𝑃

The proposed prediction then equals

𝑃 ∗
𝑖 = 𝜇𝑖𝑇 + 𝜎𝑖𝑇

𝜎𝑖𝑃
(𝑃𝑖 − 𝜇𝑖𝑃 )
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4.7 Chronic exposure assessment, episodically consumed foods

For episodically consumed foods we need to take the probability of consumption into account. Define 𝑝𝑖 as the
probability that individual 𝑖 consumes the food on any given day. The usual intake for this individual is then given by
the product of 𝑝𝑖 and 𝑇𝑖 which is now defined as the usual amount on consumption days. Since individuals will vary
in their probability pi, besides modelling the amounts as for daily consumed foods, it is also necessary to model the
frequency of consumption. A three stage analysis of 24-hour recall data is the necessary:

1. A model for the frequency of consumption
2. A model for the intakes on consumption days
3. Integration of both models in order to obtain a usual intake distribution.

Step 2 uses the analysis outlined in the previous section for the positive intakes only. For step 1 two popular models
which describe between-individual variation for the probability of consumption are the beta-binomial model and the
logistic-normal model.

4.7.1 Beta-Binomial model for frequencies (BBN)

Let 𝑛𝑖 be the total number of recall days for individual 𝑖 and 𝑋𝑖 the number of days with a positive intake. The
distribution of 𝑋𝑖, with 𝑝𝑖 the probability of consumption for individual 𝑖, is given by

𝑋𝑖 = Binomial(𝑛𝑖, 𝑝𝑖)

In this model the probability 𝑝𝑖 varies among individuals according to the Beta distribution:

𝑓(𝑝) = 𝐵−1(𝛼, 𝛽)𝑝𝛼−1(1 − 𝑝)𝛽−1

with

𝐵(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)
Γ(𝛼 + 𝛽)

Combining the binomial and the Beta distribution results in the betabinomial distribution:

𝑃(𝑋𝑖 = 𝑥) = ( 𝑛𝑖
𝑟 ) 𝐵(𝛼 + 𝑥, 𝑛𝑖 + 𝛽 − 𝑥)

𝐵(𝛼, 𝛽)
The mean and variance of the betabinomial distribution are given by

𝐸[𝑋𝑖] = 𝑛𝑖
𝛼

𝛼 + 𝛽
and

Var[𝑋𝑖] = 𝑛𝑖
𝛼𝛽(𝛼 + 𝛽 + 𝑛𝑖)

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
Using the reparameterization 𝜋 = 𝛼/(𝛼 + 𝛽) and 𝜙 = 1/(𝛼 + 𝛽 + 1), it follows that

𝐸[𝑋𝑖] = 𝑛𝑖𝜋

and

Var[𝑋𝑖] = 𝑛𝑖𝜋(1 − 𝜋)[1 + (𝑛𝑖 − 1)𝜙]

This reparameterization enables to model the probability 𝜋𝑖 of consumption for individual 𝑖 directly as a logistic
regression:

logit(𝜋𝑖) = 𝛾0 + 𝛾𝑡
1𝑍𝑖

Note that the dispersion parameter 𝜙: is assumed to be equal for all individuals. The betabinomial logistic regression
model can be fitted by means of maximum likelihood.
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4.7.2 Model based frequencies for usual intake

For the model based usual intake distribution the estimated parameters 𝜋𝑖 and 𝜙 are backtransformed using 𝛼𝑖 =
𝜋𝑖𝜙/(1 − 𝜙) and 𝛽𝑖 = (1 − 𝜋𝑖)𝜙/(1 − 𝜙). These can then be used to draw from the Beta distribution.

4.7.3 Model assisted frequencies for usual intake

For the model assisted usual intake distribution a prediction of the consumption probability is required for every
individual. Simple predictions are

1. the observed frequencies for every individual or
2. the fitted probability for evey individual. When there are no covariables the fitted probability is the same for

every individual.
3. Alternatively one can use the approach outlined in Kipnis et al (2009) employing the conditional expectation

of the probability given the observed frequency:

𝐸(𝑝𝑖|𝑋𝑖 = 𝑥) = ∫
𝑝

𝑝𝑓(𝑝|𝑋𝑖 = 𝑥)d𝑝

= ∫
𝑝

𝑝 𝑓(𝑋𝑖 = 𝑥|𝑝)𝑓(𝑝)
∫ 𝑓(𝑋𝑖 = 𝑥|𝑝)𝑓(𝑝)𝑑𝑝d𝑝

= 1
𝑃(𝑥𝑖 = 𝑥) ∫

𝑝
𝑝 ( 𝑛𝑖

𝑟 ) 𝑝𝑥(1 − 𝑝)𝑛𝑖−𝑥𝐵−1(𝛼𝑖, 𝛽𝑖)𝑝𝛼𝑖−1(1 − 𝑝)𝛽𝑖−1d𝑝

= 𝐵−1(𝛼𝑖, 𝛽𝑖)
𝑃 (𝑥𝑖 = 𝑥) ( 𝑛𝑖

𝑟 ) ∫
𝑝

𝑝𝛼𝑖+𝑥(1 − 𝑝)𝑛𝑖+𝛽𝑖−𝑥−1d𝑝

= 𝐵(𝛼𝑖 + 𝑥 + 1, 𝑛𝑖 + 𝛽𝑖 − 𝑥)
𝐵(𝛼𝑖 + 𝑥, 𝑛𝑖 + 𝛽𝑖 − 𝑥)

= 𝛼𝑖 + 𝑥
𝛼𝑖 + 𝛽𝑖 − 𝑥

For individual with zero intakes on all recall days a prediction for the random individual amount effect 𝑏𝑖 is not
available. There seem to be two option for predicting the usual intake for such individuals:

• Set the individual intake to zero
• Simulate a model based prediction for the amount and combine this with the conditional expected probability
given above to obtain an individual usual intake.

4.7.4 Logistic-Normal model for frequencies (LNN0)

In this model the distribution of 𝑋𝑖 is again binomial:

𝑋𝑖 = Binomial(𝑛𝑖, 𝑝𝑖)

The probability 𝑝𝑖 is now given by a logistic regression with a random effect in the linear predictor which represents
the between-individual variation in the probability 𝑝𝑖

logit(𝑝𝑖) = 𝜆𝑖 + 𝑣𝑖 with 𝑣𝑖 ∼ 𝑁(0, 𝜎2
𝑣) and the regression equation 𝜆𝑖 = 𝛾0 + 𝛾𝑡

1𝑍𝑖

The marginal probability 𝜋𝑖 is obtained by integrating over the random effect 𝑣𝑖, i.e. using Gauss-Hermite integration

𝜋𝑖 = ∫ 𝐻(𝜆𝑖 + 𝑣)𝑓(𝑣)𝑑𝑣 ≈ 1√𝜋
𝑁

∑
𝑗=1

𝑤𝑗𝐻(𝜆𝑖 +
√

2𝜎𝑣𝑥𝑗)

in which𝐻() is the inverse of the logit transformation. Note that this is different from logit−1(𝜆𝑖)which is the median
probability. The model can be fitted by maximum likelihood using Gauss-Hermite integration. An (approximate)
maximum likelihood procedure is implemented in routine glmer of the lme4 package in R. For a new vector of
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covariates 𝑍∗
𝑖 the linear predictor 𝜆∗

𝑖 can be calculated along with its standard error Se(𝜆∗
𝑖 ). The marginal predicted

probability 𝜋∗
𝑖 can be calculated by means of Gauss-Hermite integration and the standard error of the predicted

probability can be calculated by means of the usual Taylor series expansion:

Se(𝜋∗
𝑖 ) ≈ Se(𝜆∗

𝑖 )√𝜋
𝑁

∑
𝑗=1

𝑤𝑗
𝑑

𝑑𝜆∗
𝑖
𝐻(𝜆∗

𝑖 +
√

2𝜎𝑣𝑥𝑗)

= Se(𝜆∗
𝑖 )√𝜋

𝑁
∑
𝑗=1

𝑤𝑗𝐻(𝜆∗
𝑖 +

√
2𝜎𝑣𝑥𝑗)[1 − 𝐻(𝜆∗

𝑖 +
√

2𝜎𝑣𝑥𝑗)]

4.7.5 Model based frequencies for usual intake

For the model based usual intake distribution the estimated parameters 𝜆𝑖 and 𝜎2
𝑣 can be used to generate individual

probabilities.

4.7.6 Model assisted frequencies for usual intake

For themodel assisted usual intake distribution simple predictors are (a) the observed frequencies and (b) themarginal
probability 𝜋𝑖. The conditional expectation (c) is given by

𝐸(𝑝𝑖|𝑋𝑖 = 𝑥) = ∫
𝑣

𝐻(𝜆𝑖 + 𝑣)𝑓(𝑣|𝑋𝑖 = 𝑥)d𝑣

= ∫
𝑣

𝐻(𝜆𝑖 + 𝑣) 𝑓(𝑋𝑖 = 𝑥𝑖|𝑣)𝑓(𝑣)
∫ 𝑓(𝑋𝑖 = 𝑥𝑖|𝑣)𝑓(𝑣)d𝑣d𝑣

=
∫𝑣 𝐻(𝜆𝑖 + 𝑣)[𝐻(𝜆𝑖 + 𝑣)]𝑥𝑖 [1 − 𝐻(𝜆𝑖 + 𝑣)]𝑛𝑖−𝑥𝑖𝑓(𝑣)d𝑣

∫𝑣[𝐻(𝜆𝑖 + 𝑣)]𝑥𝑖 [1 − 𝐻(𝜆𝑖 + 𝑣)]𝑛𝑖−𝑥𝑖𝑓(𝑣)d𝑣
and both nominator and denominator can be approximated by means of theGauss-Hermite integration. For individual
with zero intakes on all recall days see above for the two options.

4.7.7 Logistic-Normal model for frequencies correlated with amounts (LNN)

This model is extends the LNN0 model with a correlation between the individual random effect 𝑏𝑖 for amounts and
the individual random effect 𝑣𝑖 for frequencies. This model is also known as the NCI model and is introduced by
Tooze et al (2006) [43] with further mathematical details in Kipnis et al (2009) [31]. The model can be written as

logit(𝑃 (𝑌𝑖𝑗 > 0)) = 𝜆𝑖 + 𝑣𝑖

𝑔(𝑌𝑖𝑗) = 𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗

and (𝑣𝑖, 𝑏𝑖) ∼ BivariateNormal(0, 0, 𝜎2
𝑣, 𝜎2

𝑏 , 𝜌) and 𝑤𝑖𝑗 ∼ 𝑁(0, 𝜎2
𝑤)

The model can be fitted by maximum likelihood employing two-dimensional Gauss-Hermite integration.

4.7.8 Model based usual intake.

Model based usual intake requires generation of the pair (𝑣𝑖, 𝑏𝑖) for many hypothetical individual. The usual intake
𝑈𝑖 for such a hypothetical individual is then given by

𝑈𝑖 = 𝐻(𝜆𝑖 + 𝜈𝑖)𝑇𝑖

= 𝐻(𝜆𝑖 + 𝜈𝑖)𝐸𝑤[𝑔−1(𝜇𝑖 + 𝑏𝑖 + 𝑤𝑖𝑗)|𝑏𝑖]
= 𝐻(𝜆𝑖 + 𝜈𝑖)𝐹(𝑏𝑖)

The second term can be calculated using the method outlined for daily intakes.
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4.7.9 Model assisted usual intake.

This requires simulatenous prediction of the random effect for frequency and for amount as outlined in Kipnis et al
(2009) [31]. We have for individual 𝑖 in the study (𝑈𝑖|𝑌𝑖1, ⋯ , 𝑌𝑖𝑛𝑖

) = (𝑈𝑖|𝑌 ∗
𝑖1, ⋯ , 𝑌 ∗

𝑖𝑛𝑖
) = (𝑈𝑖|𝑥𝑖, ̄𝑌 ∗

𝑖 ) where 𝑥𝑖
is the number of positive intakes and ̄𝑌 ∗

𝑖 is the mean of the transformed positive intakes. It follows that the required
conditional expectation 𝑃𝑖 equals

𝑃𝑖 = 𝐸[𝑈𝑖|𝑥𝑖, ̄𝑌 ∗
𝑖 ]

= 𝐸𝑣𝑖,𝑏𝑖
[𝐻(𝜆𝑖 + 𝑣𝑖)𝐹(𝑏𝑖)|𝑥𝑖, ̄𝑌 ∗

𝑖 ]

= ∫ ∫ 𝐻(𝜆𝑖 + 𝑣𝑖)𝐹(𝑏𝑖)𝑓(𝑥𝑖, ̄𝑌 ∗
𝑖 |𝑣𝑖, 𝑏𝑖)𝜙(𝑣𝑖, 𝑏𝑖)𝑑𝑣𝑖𝑑𝑏𝑖

∫ ∫ 𝑓(𝑥𝑖, ̄𝑌 ∗
𝑖 |𝑣𝑖, 𝑏𝑖)𝜙(𝑣𝑖, 𝑏𝑖)𝑑𝑣𝑖𝑑𝑏𝑖

where

𝑓(𝑥𝑖, ̄𝑌 ∗
𝑖 |𝑣𝑖, 𝑏𝑖) = [𝐻(𝜆𝑖 + 𝑣𝑖)]𝑥𝑖 [1 − 𝐻(𝜆𝑖 + 𝑣𝑖)]𝑛𝑖−𝑥𝑖𝜙( ̄𝑌 ∗

𝑖 − 𝜇𝑖 − 𝑏𝑖; 0, 𝜎2
𝑤/𝑥𝑖)

Both nominator and denominator can be approximated by two-dimensional Gauss-Hermite integration. Note that for
the log-transform 𝐹(𝑏𝑖) = 𝑇𝑖 = exp(𝜇𝑖 + 𝑏𝑖 + 𝜎2

𝑤)/2) can be calculated exactly; for the power transformation an
approximation must be used. It can be expected that the predicted usual intake will not have the correct variance.
This can possibly be remedied by equating the mean and variance of 𝑈𝑖 and 𝑃𝑖. These are however rather involved
to calculate.
For individual with zero intakes on all recall days the model assisted usual intake can be set to zero, or can be simulated
as follows

1. Calculate the Model assisted frequency 𝑃0 for usual intake (see LNN0)
2. Transform 𝑃0 back to the logistic scale, i.e. 𝐿0 = logit(𝑃0) . Get the conditional distribution of

(𝑏|𝑣 = 𝐿0 − 𝜆𝑖) ∼ 𝑁 ( 𝜎𝑏
𝜎𝑣

𝜌(𝐿0 − 𝜆𝑖), (1 − 𝜌2)𝜎2
𝑏 )

3. Simulate a draw 𝑏0 from this conditional distribution and obtain the usual intake as 𝑃0 exp(𝜇𝑖 + 𝑏0 + 𝜎2
𝑤)

Note that the backtransformation from 𝑃0 to 𝐿0 is according to the median of the distribution rather than the mean.

4.8 Unit variability

A composite sample for food 𝑘 is composed of 𝑛𝑢𝑘 units with nominal unit weight 𝑤𝑢𝑘. The weight of a composite
sample is 𝑤𝑚𝑘 = 𝑛𝑢𝑘 ⋅ 𝑤𝑢𝑘 with mean residue value 𝑐𝑚𝑘.

4.8.1 Beta distribution

Under the beta model simulated unit values are drawn from a bounded distribution on the interval (0, 𝑐𝑚𝑎𝑥) with
𝑐𝑚𝑎𝑥 = 𝑛𝑢𝑘 ⋅ 𝑐𝑚𝑘. The standard beta distribution is defined on the interval (0, 1) and is usually characterised by
two parameters 𝑎 and 𝑏, with 𝑎 > 0, 𝑏 > 0 (see e.g. Mood et al. 1974) [33]. Alternatively, it can be parameterised
by the mean

𝜇 = 𝑎/(𝑎 + 𝑏)

and the variance

𝜎2 = 𝑎𝑏/(𝑎 + 𝑏 + 1)−1(𝑎 + 𝑏)−2

or, as applied in MCRA, by the mean 𝜇 and the squared coefficient of variation

𝑐𝑣2 = 𝑏𝑎−1(𝑎 + 𝑏 + 1)−1
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For the simulated unit values in each iteration of the program we require an expected value 𝑐𝑚𝑘. This scales down to
a mean value 𝜇 = 𝑐𝑚𝑘/𝑐𝑚𝑎𝑥 = 1/𝑛𝑢𝑘 in the (standard) beta distribution. From this value for 𝜇 and an externally
specified value for 𝑐𝑣𝑘 the parameters 𝑎 and 𝑏 of the beta distribution are calculated as:

𝑎 = 𝑏(𝑛𝑢𝑘 − 1)−1

and

𝑏 = (𝑛𝑢𝑘 − 1)(𝑛𝑢𝑘 − 1 − 𝑐𝑣2
𝑘)

𝑛𝑢𝑘𝑐𝑣2
𝑘

From the second formula it can be seen that 𝑐𝑣𝑘 should not be larger than√𝑛𝑢𝑘 − 1 in order to avoid negative values
for 𝑏. When the unit variability is specified by a variability factor

𝑣𝑘 = 𝑝97.5𝑘
𝑐𝑚𝑘

instead of a coefficient of variation 𝑐𝑣𝑘 then MCRA applies a bisection algorithm to find a such that the cumulative
probability

𝑃 [𝐵𝑒𝑡𝑎(𝑎, 𝑏)] = 0.975

for 𝑏 = 𝑎(𝑛𝑢𝑘 − 1).
Sampled values from the beta distribution are rescaled by multiplication with 𝑐𝑚𝑚𝑎𝑥 to unit concentrations 𝑐𝑖𝑗𝑘 on
the interval (0, 𝑐𝑚𝑚𝑎𝑥).

4.8.2 Lognormal distribution

The lognormal distribution is characterised by 𝜇 and 𝜎, which are the mean and standard deviation of the log-
transformed concentrations. The unit log-concentrations are drawn from a normal distribution with mean 𝜇 =
𝑙𝑛(𝑐𝑚𝑖𝑘) − 1/2𝜎2. The coefficient of variation 𝑐𝑣 is turned into the standard deviation 𝜎 on the log-transformed
scale with:

𝜎 = √𝑙𝑛(𝑐𝑣2 + 1)

The variability factor is defined as the 97.5th percentile of the concentration in the individual measurements divided
by the corresponding mean concentration seen in the composite sample. A variability factor 𝑣 is converted into the
standard deviation 𝜎 as follows:

𝑣 = 𝑝97.5
𝑚𝑒𝑎𝑛 = 𝑒𝜇+1.96𝜎

𝑒𝜇+1/2𝜎2 = 𝑒1.96𝜎−1/2𝜎2

with μ and 𝜎 representing the mean and standard deviation of the log-transformed concentrations. So

𝑙𝑛(𝑣) = 1.96𝜎–1/2𝜎2

Solving for 𝜎 gives:

𝜎2–2 ⋅ 1.96𝜎 + 2𝑙𝑜𝑔(𝑣) = 0

with roots for 𝜎 according to:

𝜎 = 1.96 ± √(1.962–2𝑙𝑜𝑔(𝑣))

The smallest positive root is taken as an estimate for 𝜎.
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4.8.3 Bernoulli distribution

The bernoulli model is a limiting case of the beta model, which can be used if no information on unit variability is
available, but only the number of units in a composite sample is known (see van der Voet et al. 2001). As a worst case
approach we may take the coefficient of variation 𝑐𝑣 as large as possible. When 𝑐𝑣 is equal to the maximum possible
value √𝑛𝑢𝑘 − 1, the (unstandardised) beta distribution simplifies to a bernoulli distribution with probability

(𝑛𝑢𝑘–1) /𝑛𝑢𝑘

or

(𝑣𝑘 − 1)/𝑣𝑘

for the value 0 and probability

1/𝑛𝑢𝑘

or

1/𝑣𝑘

for the value 𝑐𝑚𝑎𝑥 = 𝑛𝑢𝑘 ⋅ 𝑐𝑚𝑘.
In MCRA values 0 are actually replaced by 𝑐𝑚𝑘, to keep all values on the conservative side. For example, with 𝑛𝑢𝑘
= 5, there will be 80% probability at 𝑐𝑖𝑗𝑘 = 𝑐𝑚𝑘 and 20% probability at 𝑐𝑖𝑗𝑘 = 𝑐𝑚𝑎𝑥. When the number of units
𝑛𝑢𝑘 in the composite sample is missing, the nominal unit weight 𝑤𝑢𝑘 is used to calculate the parameter for unit
variability.

4.9 Screening calculation for large Cumulative Assessment
Groups

4.9.1 Statistical model for the screening step (acute exposure)

The screening step implements a simple model that is applied to each SCC. Assume independent NonDetectSpike-
LogNormal (NDS-LN) models for both the consumptions of food-as-measured in source S and the concentrations of
compound C in source S. A non-detect consumption is assumed to be a zero consumption. A non-detect concentration
will be imputed by a user-specified fraction f of the Limit of Reporting. Then the model for consumption has 3
parameters and the model for concentration has four parameters, as specified in Table 4.15. Note that the parameters
of the consumption distribution are estimated from the consumption data using sampling weights if these have been
provided in the consumption data set.

Table 4.15: Parameters for screening models (per source/compound)
parameter consumptions concentrations
probability of a positive 𝜋𝑥 𝜋𝑐
mean positives (ln scale) 𝜇𝑥 𝜇𝑐
standard deviation positives (ln scale) 𝜎𝑥 𝜎𝑐
value to use for NonDetects (ln scale) 𝑓 ⋅ 𝐿𝑐

Exposure is consumption times concentration, so on logarithmic scale they can be added
𝑒 = 𝑥 + 𝑐.

The assessment will focus on a chosen percentile of exposure, e.g. p95. The relevant fraction will be denoted by 𝑝,
for example 𝑝 = 0.95 for the 95th percentile. The two NDS-LN models combine to three possibilities, depending
on whether there is consumption and if so, whether the concentration is non-detect or positive. In the screening
model the two possibilities that lead to potential exposure are modelled with a mixture of two lognormal distribution.
For the non-detect case the positive exposure distribution equals the positive consumption distribution modified by
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the multiplication of a user-chosen factor times an estimate of the average worst-case limit value for concentration
(LOR):

𝜋1 = 𝜋𝑥(1 − 𝜋𝑐); 𝜇1 = 𝜇𝑥 + 𝑓 ⋅ 𝐿𝑐; 𝜎1 = 𝜎𝑥

where 𝐿𝑐 is the logarithm of the LOR, or, if there are multiple analytical methods with different LOR, a weighted
average of these different LORs.
For the detect case the positive exposure distribution is easily combined from the positive consumption distribution
and the positive concentration distribution:

𝜋2 = 𝜋𝑥𝜋𝑐; 𝜇2 = 𝜇𝑥 + 𝜇𝑐; 𝜎12 = √𝜎2𝑥 + 𝜎2𝑐

𝑝 can be corrected for the non-consumptions to the appropriate fraction needed in the mixture of the two positive
distributions:

𝑝′ = 𝑝 − (1 − 𝜋𝑥)
𝜋𝑥

If 𝑝′ ≤ 0 then all positive exposures are beyond the requested fraction, and the estimated exposure is just 0.
If 𝑝′ > 0 then the relevant log exposure 𝑒𝑝 satifies

(1 − 𝜋𝑐) ⋅ Φ (𝑒𝑝 − 𝜇1
𝜎1

) + 𝜋𝑐 ⋅ Φ (𝑒𝑝 − 𝜇12
𝜎2

) = 𝑝′

where Φ(⋅) represents the cumulative standard normal distribution function. The value of 𝑒𝑝 can easily be found in
a bisection search within the interval

[𝜇𝑚𝑖𝑛 − 4𝜎𝑚𝑎𝑥, 𝜇𝑚𝑎𝑥 + 𝑚𝑎𝑥(0, 𝑧𝑝′𝜎𝑚𝑎𝑥)].

The final exposure percentile estimate then is exp(𝑒𝑝).
Denote by 𝑒(𝑝,𝑚𝑎𝑥) the highest estimate (for the SCC denoted by 𝑆𝑆𝐶highest). Then evaluate for each SCC the
probability to exceed 𝑒(𝑝,𝑚𝑎𝑥).

𝑃𝑖 = 𝑃𝑟(𝑒 > 𝑒𝑝,𝑚𝑎𝑥) = 𝜋𝑥 ⋅ [(1 − 𝜋𝑐) ∗ Φ (𝑒𝑝,𝑚𝑎𝑥 − 𝜇1
𝜎1

) + 𝜋𝑐 ⋅ Φ (𝑒𝑝,𝑚𝑎𝑥 − 𝜇2
𝜎1

)]

𝑃𝑖 is a tentative measure for the ‘probability of a high exposure’. For 𝑆𝑆𝐶highest 𝑃𝑖 = 1 − 𝑝, for all other SCCs it
will be lower. The sum of all these probabilities is not a meaningful probability in itself. However, this sum is used
to scale the individual 𝑃𝑖 values to measures of relative importance for the SCCs

𝐼𝑚𝑝𝑖 = 𝑃𝑖/ ∑ 𝑃𝑖

Rank all SCCs according to 𝐼𝑚𝑝𝑖 and calculate cumulative importance. The relative importance of the two mixture
components at 𝑒𝑝 can be estimated as

𝑤1,2 =
𝜋1,2 ⋅ 𝜙 ( 𝑒𝑝−𝜇1,2

𝜎1,2
) /𝜎1,2

𝜋1 ⋅ 𝜙 ( 𝑒𝑝−𝜇1
𝜎1

) /𝜎1 + 𝜋2 ⋅ 𝜙 ( 𝑒𝑝−𝜇2
𝜎2

) /𝜎2

where 𝜙(.) represent the standard normal probability density function. The user interface should allow to select
the top-N SCCs from the list, based on a chosen percentage (e.g. 95%) of cumulative importance included. The
full analysis will calculate exactly the same exposure distribution as a full analysis without screening. However, less
information is retained in the output. This concerns tables with information on foods-as-eaten, which is only shown
for the selected risk driver components (SCCs). Risk drivers are groupings of SCCs (risk driver components) at the
level of measured-source-compound combinations (MSCCs). Note that output for an MSSC (e.g. APPLE/captan)
only covers the selected SCCs (e.g. APPLE from apple juice/captan and APPLE from apple pie/captan), but not
unselected SCCs (e.g. APPLE from fruit yoghurt/captan).
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4.9.2 Statistical model for the screening step (chronic exposure)

In chronic exposure assessments, the mean concentration of chemicals is calculated first, and combined with the
consumption distribution. For this reason a chronic calculation uses less memory, and therefore larger datasets can be
handled. The model described under Acute can be simplified for a chronic screening. The concentration distribution
is only used to estimate a mean exposure, incorporating any effect from the imputation of non-detects. The exposure
distribution is therefore only a scaled version of the consumption distribution.

𝜋2 = 𝜋𝑥𝜋𝑐; 𝜇2 = 𝜇𝑥 + 𝜇𝑐; 𝜎2 = 𝜎𝑥

The parameters of the consumption distribution (𝜋𝑥, 𝜇𝑥, 𝜎𝑥) are calculated from the observed individual means
(OIMs), i.e. the mean daily consumptions over the survey days of each person in the data (allowing for sampling
weights). The percentiles are calculated as 𝑒𝑝 = 𝜇2 + 𝑧𝑝 where 𝑧 is a percentile of the standard normal distribution.
The exceedances of the maximum percentile are calculated as

𝑃𝑖 = 𝑃𝑟(𝑒 > 𝑒𝑝,𝑚𝑎𝑥) = 𝜋𝑥 ⋅ Φ (𝑒𝑝,𝑚𝑎𝑥 − 𝜇2
𝜎2

)
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FERA, Food and Environmental Research Agency
RIVM, National Institute for Public Health and the Environment

This manual was created for MCRA 9.0 (build 9.0.40.1) for Prod-RIVM on Tue May 19 16:33:19 2020.

5.1 Contributors to MCRA

Main programmers of MCRA are:
Waldo de Boer, Johannes Kruisselbrink, Marco van Lenthe

Many people contributed to the MCRA code over the years:
Frits van Evert, Jack van Galen, Paul Goedhart, Gerie van der Heijden, Hans van den Heuvel, Paul Keizer, Marcel
Koenders, Jaap Kokorian, Sanne Korzec, Helen Owen, Gerrit Polder, Pim Reijersen, Willem Roelofs, Gert-Jan
Swinkels, Jac Thissen, Hilko van der Voet.
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Jan Dirk te Biesebeek, Polly Boon, Gerda van Donkersgoed, Jacob van Klaveren, Corinne Sprong.

Contributors to the MCRA Reference Manual:
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RIVM National Institute for Public Health and the Environment
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Telephone: +31 30 2749111
https://rivm.nl
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